The emf is what is induced by electromagnetic induction in these problems. It IS an induced emf in that sense, but just saying emf should be clear. Emf is basically a voltage but the source isn't from what you'd normally expect a potential difference to arise from. The term is also used in batteries, for example
You could think of it like "the induced voltage" if it helps but know that it's not quite accurate.
a) is explained by Lenz's Law. Your question as worded is awkward, don't think of it as increasing or decreasing per se, think of it as increasing in one direction or the other(it's the CHANGE that matters)
To help remember, note that it's almost like the system has "inertia." The B field is going to change, one way or the other, and induce a current in the loop. The current in the loop is going to cause a magnetic field. The direction of the current is going to be such as to create a magnetic field that OPPOSES the CHANGE in the original magnetic field
When determining the direction you don't give two craps about the original magnitude of the B field or which direction it was pointing, you care which direction it's CHANGING.
So if I have a wire loop sitting on my desk and a B field pointing up that's increasing(ie it was pointing up and is now getting bigger in the up direction)the induced current, just from the right hand rule, is going to be clockwise, so that the B field that comes from the induced current will oppose the change.
If I had that same setup but the original B field was pointing DOWN but decreasing(ie it was originally pointing down but is now growing in the up direction, even if it's not pointing up yet)the induced current would still be flowing the same direction
This is all described by your first equation(the induced emf is opposite the direction of dB/dt)
The second equation has to do with flowing conductive liquids or something, right?
The third one, I'm unsure if it belongs