Directional Derivatives and Commutation

In summary, the conversation discusses the need to prove that directional derivatives do not commute and the use of a vector identity to find a solution. The final solution is given, but the individual is looking for an explanation of the vector identity used.
  • #1



Homework Statement

I need to prove that directional derivatives do not commute.

Homework Equations

Thus, I need to show that:
(\vec{A} \cdot \nabla)(\vec{B} \cdot \nabla f) - (\vec{B} \cdot \nabla)(\vec{A} \cdot \nabla f) = (\vec{A} \cdot \nabla \vec{B} - \vec{B} \cdot \nabla \vec{A}) \cdot \nabla f

The Attempt at a Solution

I used the following vector identity:

[tex] \nabla (\vec{C} \cdot \vec{D}) = (\vec{C} \cdot \nabla) \vec{D} + (\vec{D} \cdot \nabla) \vec{C} + \vec{C} \times (\nabla \times \vec{D}) + \vec{D} \times (\nabla \times \vec{C}) [/tex]

And got:

[tex] \vec{A} \cdot \left[ \vec{B} \times (\nabla \times \nabla f) + (\vec{B} \cdot \nabla)\nabla f + \nabla f \times (\nabla \times \vec{B}) + (\nabla f \cdot \nabla) \vec{B} \right] - \vec{B} \cdot \left[ \vec{A} \times (\nabla \times \nabla f) + (\vec{A} \cdot \nabla)\nabla f + \nabla f \times (\nabla \times \vec{A}) + (\nabla f \cdot \nabla) \vec{A} \right] [/tex]

Then I reduced this to:

[tex] \vec{A} \cdot \left[ \nabla f \times (\nabla \times \vec{B}) + (\nabla f \cdot \nabla) \vec{B} \right] - \vec{B} \cdot \left[ \nabla f \times (\nabla \times \vec{A}) + (\nabla f \cdot \nabla) \vec{A} \right] [/tex]

I am not sure how to proceed from here or if I even am on the right track. Any help is much appreciated. Thanks.
Last edited:
Physics news on
  • #2
So I found a solution but would still find it useful if someone could explain the vector identity used:

(A⃗ ⋅∇)(B⃗ ⋅∇f)−(B⃗ ⋅∇)(A⃗ ⋅∇f) =
[tex] \vec{B} \cdot \left[ (\vec{A} \cdot \nabla ) \nabla f \right] + (\vec{A} \cdot \nabla \vec{B}) \cdot \nabla f - \vec{A} \cdot \left[ (\vec{B} \cdot \nabla ) \nabla f \right] + (\vec{B} \cdot \nabla \vec{A}) \cdot \nabla f [/tex]

The second and third terms cancel and yield the given answer.
Last edited:

Suggested for: Directional Derivatives and Commutation