Discrete math:propositional logic

  • Thread starter Thread starter svishal03
  • Start date Start date
  • Tags Tags
    Discrete Logic
svishal03
Messages
124
Reaction score
1

Homework Statement


I want to construct a truth table for the following propositions


Homework Equations



(a) ¬p ∨ q
(b) p ∧ q ⇒ p
(c) ¬p ∨ q ⇔ p ⇒ q



The Attempt at a Solution



Approach:
1) Determine the order of precedence:

2) Fill in the values for the operator with the higher precedence:


3) Next fill in the values for the lower precedence

I guess, answer for a , b and c is:

(a) ¬p ∨ q
p q ¬p ∨q
t t f t
t f f f
f t t t
f f t t

(b) p ∧ q ⇒ p
p q p ∧ q ⇒ p
t t t t
t f f t
f t f t
f f f t

(c) ¬p ∨ q ⇔ p ⇒ q
p q ¬p ∨q ⇔ p ⇒ q
t t f t t t
t f f f t f
f t t t t t
f f t t t t

Is this right?

Further, can anyone explain intuitive statements to explain any of the above--say (a) and (b)---i.e reasoning out (a) and (b) truth table through example statements

Homework Statement



please help!

Homework Equations





The Attempt at a Solution

 
Physics news on Phys.org
Your tables are not clear enough for me to make out exactly what you are doing. I'm also not convinved there is a precedence rule between \Rightarrow and \Leftrightarrow. Part (c) may end up being ambiguous.

--Elucidus
 
Can you comment upon part (a) and (b) only at least?
(a) ¬p ^ q
p q ¬p ^q
t t f t
t f f f
f t t t
f f t t


(b) p ¬ q => p
p q p ¬ q => p
t t t t
t f f t
f t f t
f f f t

Can you give statements t prove the logic?Or making it independent of precedence, srating from a scratch, how would you go about?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top