Displacement as a discrete function of time

AI Thread Summary
The discussion revolves around the concept of displacement as a function of time, specifically how the displacement at any time t, denoted as x(t), depends on an initial displacement X_0. The participants explore methods for finding x(t) explicitly, emphasizing the need for interpolation techniques such as linear interpolation or cubic splines to connect discrete points. There is confusion regarding the volume expression d^3x and its integration, with participants debating the correct formulation and whether it can be expressed as v(t) = Π_i f_t(X_i). The conversation highlights the importance of defining x properly and understanding its dependence on both X and t, even though t is treated as a discrete variable in this context. The thread ultimately seeks clarity on the relationship between displacement, volume, and time.
Apashanka
Messages
427
Reaction score
15
Homework Statement
Given initial displacement ##X_0## and displacement at any time ##t## as ##x##.

Where ##x(t)=f_t(X_0)## where the functional dependence of ##x## upon ##X_0## changes with time.

For exm ##X_0=2## and ##x(t_1)=X^2_0=4,x(t_2)=X^2_0+1=5,x(t_3)=X_0^3+3=11....##and so on.

From this, is there any method to find ##x(t)## as an explicit function of time??(##X_0=##constt,initial fixed coord.)

Another part from above we find ##dx=(\partial_{X_0}f_t(X_0))dX_0## and hence in 3-D ##d^3x=\Pi_i (\partial_{X_i} f_t(X_i)d^3X##

Therefore at any time the volume will be ##\Pi_i f_t(X_i)## isn't it??
Relevant Equations
Given initial displacement ##X_0## and displacement at any time ##t## as ##x##.

Where ##x(t)=f_t(X_0)## where the functional dependence of ##x## upon ##X_0## changes with time.

For exm ##X_0=2## and ##x(t_1)=X^2_0=4,x(t_2)=X^2_0+1=5,x(t_3)=X_0^3+3=11....##and so on.

From this, is there any method to find ##x(t)## as an explicit function of time??(##X_0=##constt,initial fixed coord.)

Another part from above we find ##dx=(\partial_{X_0}f_t(X_0))dX_0## and hence in 3-D ##d^3x=\Pi_i (\partial_{X_i} f_t(X_i)d^3X##

Therefore at any time the volume will be ##\Pi_i f_t(X_i)## isn't it??
Given initial displacement ##X_0## and displacement at any time ##t## as ##x##.
Where ##x(t)=f_t(X_0)## where the functional dependence of ##x## upon ##X_0## changes with time.
For exm ##X_0=2## and ##x(t_1)=X^2_0=4,x(t_2)=X^2_0+1=5,x(t_3)=X_0^3+3=11...##and so on.
From this, is there any method to find ##x(t)## as an explicit function of time??(##X_0=##constt,initial fixed coord.)
Another part from above we find ##dx=(\partial_{X_0}f_t(X_0))dX_0## and hence in 3-D ##d^3x=\Pi_i (\partial_{X_i} f_t(X_i)d^3X##
Therefore at any time the volume will be ##\Pi_i f_t(X_i)## isn't it??
 
Physics news on Phys.org
No.
 
  • Like
Likes hutchphd
jbriggs444 said:
No.
Then what will be will you please help??
 
Apashanka said:
Then what will be will you please help??
As I understand it, you are interested in interpolation. There is no unique way of assigning a curve through a set of discrete points. Various approaches are possible such as linear interpolation, interpolating polynomials, cubic splines and least squares fit to a [insert function family here].

Typically, one wants to find a function family that is well motivated physically and then use a least squares approach to zero in on a suitable family member.
 
Last edited:
  • Like
Likes Apashanka and berkeman
jbriggs444 said:
As I understand it, you are interested in interpolation. There is no unique way of assigning a curve through a set of discrete points. Various approaches are possible such as linear interpolation, interpolating polynomials, cubic splines and least squares fit to a [insert function family here].

Typically, one wants to find a function family that is well motivated physically and then use a least squares approach to zero in on a suitable family member.
Is the volume expression correct what I have posted above??
 
No.
 
jbriggs444 said:
No.
Then what it will be ??
 
See response #4 above.
 
jbriggs444 said:
See response #4 above.
I am asking for the volume expression e.g ##d^3x## in my first post
 
  • #10
Apashanka said:
I am asking for the volume expression e.g ##d^3x## in my first post
First you have to define x. As #4 points out, you cannot do that merely by stating a finite number of values. The idea that the third derivative of x (with respect to time?) is a "volume" is disconcerting as well.
 
  • #11
jbriggs444 said:
First you have to define x. As #4 points out, you cannot do that merely by stating a finite number of values.
What I am asking is as ##x=f_t(X)## at any time ##t## then ##dx=\partial_X f_t(X) dX## and in 3-D it becomes ##d^3x=\Pi_i \partial_{X_i}f_t(X_i) d^3X## also sometimes called ##d^3x=Jd^3X##.
Integrating both sides can it be written ##v(t)=\Pi_i f_t(X_i)## for given ##Xi's##..??(##f_t(X)## known for any finite time)
 
  • #12
Apashanka said:
What I am asking is as ##x=f_t(X)## at any time ##t## then ##dx=\partial_X f_t(X) dX## and in 3-D it becomes ##d^3x=\Pi_i \partial_{X_i}f_t(X_i) d^3X## also sometimes called ##d^3x=Jd^3X##.
Integrating both sides can it be written ##v(t)=\Pi_i f_t(X_i)## for given ##Xi's##..??
I see a lot of notation with nary a definition in sight.
 
  • Like
Likes Dr_Nate
  • #13
Apashanka said:
What I am asking is as ##x=f_t(X)## at any time ##t## then ##dx=\partial_X f_t(X) dX## and in 3-D it becomes ##d^3x=\Pi_i \partial_{X_i}f_t(X_i) d^3X## also sometimes called ##d^3x=Jd^3X##.
Integrating both sides can it be written ##v(t)=\Pi_i f_t(X_i)## for given ##Xi's##..??(##f_t(X)## known for any finite time)
Presumably you mean ##x(X,t)=f_t(X)##, and since t is continuous that is effectively ##x(X,t)=f(t,X)##. So ##dx=\partial_X f(t,X) dX+\partial_t f(t,X) dt##.

But you seem not to be concerned with t as a variable, so let's make it simpler by getting rid of it: ##x(X)=f(X)##, ##dx=f'(X) dX##.

Your volume differential is then ##d^3x=\Pi_i f'(X_i) d^3X=Jd^3X##, but I'm not sure you can integrate that as ##v=\Pi_i f(X_i)##. Need to think about the bounds.
 
  • Like
Likes Apashanka
  • #14
haruspex said:
Presumably you mean ##x(X,t)=f_t(X)##, and since t is continuous that is effectively ##x(X,t)=f(t,X)##. So ##dx=\partial_X f(t,X) dX+\partial_t f(t,X) dt##.

But you seem not to be concerned with t as a variable, so let's make it simpler by getting rid of it: ##x(X)=f(X)##, ##dx=f'(X) dX##.

Your volume differential is then ##d^3x=\Pi_i f'(X_i) d^3X=Jd^3X##, but I'm not sure you can integrate that as ##v=\Pi_i f(X_i)##. Need to think about the bounds.
I am not taking ##x## as an explicit function of ##t## , although ##x## varies with ##t##...to take this into account ##x## at any ##t## is ##f_t(X)## where the functional dependence changes with time given ##X## fixed initial coordinate.
For exm for given ##X=2## say ##x## at ##t_1## varies as ##X^2##,at ##t_2## as ##X^2+2## ,at ##t_3## as ##X+15## and so on...
 
  • #15
Apashanka said:
I am not taking ##x## as an explicit function of ##t## , although ##x## varies with ##t##...to take this into account ##x## at any ##t## is ##f_t(X)## where the functional dependence changes with time given ##X## fixed initial coordinate.
For exm for given ##X=2## say ##x## at ##t_1## varies as ##X^2##,at ##t_2## as ##X^2+2## ,at ##t_3## as ##X+15## and so on...
So although t is time it is a discrete variable, and does not really enter into the matter as far as the thread is concerned.
 
  • Like
Likes Apashanka
Back
Top