Distribution of distances from the origin of randomly generated points

AI Thread Summary
The discussion revolves around determining the distribution of distances from the origin for randomly generated points in four-dimensional space. The radial distance is expressed as d = √(x₁² + x₂² + x₃² + x₄²), where each variable is independently and identically distributed (IID) with a normal distribution. The relevant distribution for the sum of squares of these normals is chi-squared, and the square root of this sum follows a chi distribution. Participants clarify that to account for the parameters σ and μ, one must "unnormalize" the variables based on the probability density function. This understanding is crucial for accurately transforming the density function in the context of the problem.
Robin04
Messages
259
Reaction score
16
Homework Statement
We randomly generate points in 4 dimensional Euclidean space. The expecte value ##\mu## of the coordinates is 0 and the standard deviation is ##\sigma = 2.5##. Their distribution is normal.
What's the distribution of the distance of these points from the origin?
Relevant Equations
Density of the normal distribution: ##\rho (x)=\frac{1}{\sqrt{2 \pi \sigma}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}##
I'm not really sure how to do this. Maybe somehow I should transform the density function. Can you give me a hint?
 
Physics news on Phys.org
How do you write the radial distance from the origin in terms of the 4 coordinates?
 
marcusl said:
How do you write the radial distance from the origin in terms of the 4 coordinates?
##d=\sqrt{x_1^2+x_2^2+x_3^2+x_4^2}##
 
Right. You know that each variable is IID random with the same normal distribution. What distribution applies? (You may have seen the more usual case for 2 dimensions.)
 
marcusl said:
Right. You know that each variable is IID random with the same normal distribution. What distribution applies? (You may have seen the more usual case for 2 dimensions.)
I'm not sure what you mean by that. I think I haven't seen the problem for 2 dims.
 
Hmm, we at PF are supposed to guide you to the answer without giving it outright, but I'm not sure what to do here...
The distribution you're looking for is related to chi-squared. Have you seen that?
 
marcusl said:
Hmm, we at PF are supposed to guide you to the answer without giving it outright, but I'm not sure what to do here...
The distribution you're looking for is related to chi-squared. Have you seen that?
Oh yes, we learned an equation for that: ##\rho_n (x) = \frac{1}{\Gamma (n/2) 2^{n/2}}x^{\frac{n}{2}-1}e^{-\frac{x}{2}}##
In my case n would be 4. And I also have to transform this as I need the square root, right?
 
Well, this is a starting point, it's the distribution for d^2. You want a related distribution that has the name "chi" in it.
 
  • #10
That's it--a chi distribution.
 
  • Like
Likes Robin04
  • #11
marcusl said:
That's it--a chi distribution.
Thank you very much! Sorry for my clumsiness, I need to clean my head about this topic :D
 
  • #12
Just to repeat, the sum of squares of normals is Chi-squared -distributed.
 
  • Like
Likes Robin04
  • #13
Oh, but where do ##\sigma## and ##\mu## come into the game?
 
  • #14
WWGD said:
Just to repeat, the sum of squares of normals is Chi-squared -distributed.
But the problem is looking for the square-root of the sum of squares, which has a Chi distribution.
 
  • #15
marcusl said:
But the problem is looking for the square-root of the sum of squares, which has a Chi distribution.
You're right, I should have completed it. I was trying to do it step-by-step, but I did not finish--my bad:
Start with indepent ID Normals. The sum of their squares is Chi-square-distributed. The square root in previous step is Chi-distributed.
 
  • #17
Robin04 said:
Oh, but where do ##\sigma## and ##\mu## come into the game?
Take a look at the first equation in the Wikipedia article and you'll see that the pdf is for normalized, zero-mean random variables (just as is the pdf you quoted for Chi-squared in post #7). You need to "unnormalize" the variables and you'll find sigma shows up in the pdf expression.
 
Last edited:
Back
Top