another way to look at it is via the basic theorems using these terms, i.e. green's theorem, gauss's theorem, and the divergence theorem.
e.g. if you look at greens thm i believe it says that the integral of Adx + Bdy around a closed path, equals the integral of the curl of (A,B) over the inside of the path.
But look at the expression Adx + Bdy, integrated in terms of a parametrization x(t),y(t) of the path. It becomes [A dx/dt + B dy/dt] dt which is the dot product of the vector field (A,B) with the velocity vector (dx/dt, dy/dt), i.e. the tangent vector to the path.
Now this dot product measures how much the vector field is tangent to the path. So this quantity is largest when the vector field remains tangent to the path all the way around the path, i.e. when it rotates around the inside of the path, as the path does.
Since greens thm says this same quantity is obtained by integrating "curl (A,B)" over the interior of the path, then "curl (A,B)" must be measuring also the same thing, i.e. how much the vector field curls around inside the path.
I guess I do not understand this perfectly myself, but I think of it like that.
In the same way, the divergence theorem says that when you integrate the dot product of the vector field (A,B,C) against the outward normal vector to the surface, integrated over the surface, you get the same answer as when you integrate the quantity "divergence of (A,B,C)" over the interior of the surface.
Since the first integral measures how much the vector field points out of the surface, and averages that over the surface, it computes how much of the field is flowing out of the surface. since the thm says the integral of the "divergence" measures the same thing, hence the divergence must measure those sources inside the surface from which the material forming the field is flowing.
Speeding electron has a better intuitive grip on it than I do, but this is sort of the opposite of his explanation. I.e. he went from the large to the small, i.e. he took a derivative to define the curl, or the divergence, and I am saying what happens when you integrate those quantities back again.
Does this help? I ahd an old book called something like partial differential equations of physics that made this stuff really clear.