Hi, every one.
Do you know Probability Axioms (by Kolmogorov) ?
Event : E⊆Ω Probability : Pr(E)
Axiom 1 0≦Pr(E)≦1
Axiom 2 Pr(Ω)=1
Axiom 3 Ei∩Ej=∅ (i≠j)
⇒ Pr(E1∪E2∪・・・∪En)=Pr(E1)+Pr(E2)+ ・・・+Pr(En)
Two particles in the container.
[left, right] (left up, left low, right up, right low)
Ω={[2,0],[1,1],[0,2]}
Ω={(2,0,0,0),(1,1,0,0),(0,2,0,0),
(1,0,1,0),(1,0,0,1),(0,1,1,0),(0,1,0,1),
(0,0,2,0),(0,0,1,1),(0,0,0,2)}
Method A:Two particles are distinguishable.
→Pr({[2,0]})=Pr({[0,2]}), Pr({1,1]})=2Pr({[2,0]})
Pr({(2,0,0,0)})=Pr({(0,2,0,0)})=Pr({(0,0,2,0)})=Pr({(0,0,0,2)}),
Pr({(1,1,0,0)})=Pr({(1,0,1,0)})=Pr({(1,0,0,1)})=Pr({(0,1,1,0)})
=Pr({(0,1,0,1)})=Pr({(0,0,1,1)})=2Pr({(2,0,0,0)})
Method B:Two particles are indistinguishable.
→Pr({[2,0]})=Pr({[0,2]}), Pr({1,1]})=Pr({[2,0]})
Pr({(2,0,0,0)})=Pr({(0,2,0,0)})=Pr({(0,0,2,0)})=Pr({(0,0,0,2)})
=Pr({(1,1,0,0)})=Pr({(1,0,1,0)})=Pr({(1,0,0,1)})=Pr({(0,1,1,0)})
=Pr({(0,1,0,1)})=Pr({(0,0,1,1)})
By using Method A,
1=Pr(Ω)=4Pr({[2,0]}) ∴Pr({[2,0]})=1/4
1=Pr(Ω)=16Pr({(2,0,0,0)}) ∴Pr({(2,0,0,0)})=1/16
Accordingly
Pr({(2,0,0,0)})+Pr({(1,1,0,0)})+Pr({(0,2,0,0)})=1/4
By the way,
{[2,0]}={(2,0,0,0)}+{(1,1,0,0)}+{(0,2,0,0)}
And
Pr({[2,0]})= Pr({(2,0,0,0)})+Pr({(1,1,0,0)})+Pr({(0,2,0,0)})
It fits Axom 3.
By using Method B,
1=Pr(Ω)=3Pr({[2,0]}) ∴Pr({[2,0]})=1/3
1=Pr(Ω)=10Pr({(2,0,0,0)}) ∴Pr({(2,0,0,0)})=1/10
Accordingly
Pr({(2,0,0,0)})+Pr({(1,1,0,0)})+Pr({(0,2,0,0)})=3/10
By the way,
{[2,0]}={(2,0,0,0)}+{(1,1,0,0)}+{(0,2,0,0)}
But
Pr({[2,0]})≠ Pr({(2,0,0,0)})+Pr({(1,1,0,0)})+Pr({(0,2,0,0)})
It doesn't fit Axom 3.
The elementary particles are mysterious.
The observation result may change for one's heart.
But, this is a discussion of the mathematics purely.