- #1
Nusc
- 760
- 2
Homework Statement
[tex]
\begin{subequations}
\begin{eqnarray}
s + \kappa + g^{2} \int_{-\infty}^{\infty} d \Delta'\; {\cal \rho}(\Delta')\, \frac{1}{s+\gamma+i\Delta'}
&=&
s + \kappa + g^{2} \int_{-\infty}^{\infty} d \Delta'\; \frac{1}{(s^{2}+\omega^{2})}\, \frac{1}{(s+\gamma+i\Delta')}
\\
\nonumber
&=&
s + \kappa + g^{2} \int_{-\infty}^{\infty} d \Delta'\; \frac{1}{(s+i\omega)(s-i\omega)}\, \frac{1}{(s+\gamma+i\Delta')}
\\
\nonumber
\end{eqnarray}
\end{subequations}
[/tex]
Homework Equations
The Attempt at a Solution
Do I have to use residue theory here?