- #1

Nusc

- 760

- 2

## Homework Statement

[tex]

\begin{subequations}

\begin{eqnarray}

s + \kappa + g^{2} \int_{-\infty}^{\infty} d \Delta'\; {\cal \rho}(\Delta')\, \frac{1}{s+\gamma+i\Delta'}

&=&

s + \kappa + g^{2} \int_{-\infty}^{\infty} d \Delta'\; \frac{1}{(s^{2}+\omega^{2})}\, \frac{1}{(s+\gamma+i\Delta')}

\\

\nonumber

&=&

s + \kappa + g^{2} \int_{-\infty}^{\infty} d \Delta'\; \frac{1}{(s+i\omega)(s-i\omega)}\, \frac{1}{(s+\gamma+i\Delta')}

\\

\nonumber

\end{eqnarray}

\end{subequations}

[/tex]

## Homework Equations

## The Attempt at a Solution

Do I have to use residue theory here?