Do Incompatible Observables Have Common Eigenfunctions?

  • Thread starter Thread starter kakarukeys
  • Start date Start date
  • Tags Tags
    observables
kakarukeys
Messages
187
Reaction score
0
Incompatible observables do not share a complete set of common eigenfunctions, because their operators do not commute.

It seems that, incompatible observables like x and p_x, S_x and S_y do not have any common eigenfunction at all.

Can anyone give a concrete example of a pair of incompatble observables that have common eigenfunctions but incomplete (do not span the Hilbert Space)?
 
Physics news on Phys.org
kakarukeys said:
Can anyone give a concrete example of a pair of incompatble observables that have common eigenfunctions but incomplete (do not span the Hilbert Space)?

The only example I can think of is the state of zero orbital angular momentum. The eigenfunction common to the incompatible operators Lx, Ly, and Lz is the spherical harmonic Y00, with a zero eigenvalue.
 


One example of incompatible observables that have common eigenfunctions but incomplete set of eigenfunctions is the position and momentum operators in quantum mechanics. The position operator, denoted as x, and the momentum operator, denoted as p, do not commute with each other. This means that there is no single set of common eigenfunctions that can simultaneously diagonalize both operators. However, there are certain wavefunctions that are eigenfunctions of both x and p, such as the Gaussian wavefunction.

But even though these eigenfunctions are shared by both operators, they do not span the entire Hilbert Space. This is because there are other wavefunctions that are eigenfunctions of x or p, but not both. For example, a plane wave is an eigenfunction of the momentum operator but not the position operator. Therefore, the set of common eigenfunctions of x and p is incomplete and does not span the entire Hilbert Space.

This shows that incompatible observables, while having some common eigenfunctions, do not have a complete set of common eigenfunctions. This is due to the fact that their operators do not commute, leading to a lack of shared eigenfunctions and an incomplete set of eigenfunctions.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top