Does a pendulum in a vacuum ever stop moving completely?

  • Thread starter Thread starter Saurophaganax
  • Start date Start date
  • Tags Tags
    Pendulum
AI Thread Summary
A pendulum in a vacuum will not stop moving completely due to the absence of air resistance, but it will still experience energy loss from internal friction. While the distance the bob travels decreases over time, it theoretically approaches zero without ever reaching a complete stop. Newton's first law indicates that an unbalanced force is required to change the pendulum's state of motion, but gravity continues to act on it even in a vacuum. The conservation of energy suggests that energy will eventually dissipate as heat, leading to a gradual slowdown. Ultimately, a pendulum will seem to stop but will still possess some residual motion.
Saurophaganax
Messages
2
Reaction score
0
I was watching a film in my oceanography class about waves when I started to think about the energy loss and motion of pendulums. I want to know if a pendulum in a vacuum will ever stop moving completely. I know there is friction within the pendulum. I also know that the distance that the bob travels in each swing decreases multiplicatively. In calculus I learned that multiplying something by a number n such that 0<n<1 infinitely many times approaches 0. Does this apply to the pendulum's velocity?

Does a pendulum actually stop moving completely or does it seem to stop but still move?
 
Physics news on Phys.org
Newton's first law states that unless an unbalanced force acts upon a body of matter, causing the mass to accelerate, the mass will stay at rest or travel indefinitely in a straight line with a constant velocity. Pendulums oscillate because gravity and the tension in the pendulum string/cable/ whatever are continuously acting upon the mass. Gravity still exists even in a vacuum. Even out in isolated space where gravity is less intrusive, if the pendulum were still magically swinging back and forth because of the presence of a magical force, the conservation of energy implies that some source of energy is being translated into the physical movement of the pendulum and that all of the energy will eventually become unusable heat.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Thread 'Beam on an inclined plane'
Hello! I have a question regarding a beam on an inclined plane. I was considering a beam resting on two supports attached to an inclined plane. I was almost sure that the lower support must be more loaded. My imagination about this problem is shown in the picture below. Here is how I wrote the condition of equilibrium forces: $$ \begin{cases} F_{g\parallel}=F_{t1}+F_{t2}, \\ F_{g\perp}=F_{r1}+F_{r2} \end{cases}. $$ On the other hand...
Back
Top