CosmologyHobbyist said:
Hi! A question from a beginner in quantum physics... If the quantum field randomly produces an electron-positron pair, and the pair annhialate, a gamma ray photon is produced. The net result of this process is gamma ray photons coming out of the quantum field at random. This means the quantum field is constantly producing energy out, with no energy inputs. I have never read that the quantum field randomly absorbs photons to provide energy for pair creation. This seems to me to be in violation of conservation of energy. Does the quantum field constantly pour energy into the universe, or is there a balancing side to this equation?
This is a question that comes back regularly. The answer is: depends on exactly what one understands by "virtual particles". In a commonly used version of it, there is, at each interaction, perfect conservation of energy and momentum. Only, the "virtual particles" are not exactly like their real counter parts. One sometimes says that they are "off-shell", and they can carry imaginary mass for instance. It is only when one insists on them to ressemble a bit more to their real counterparts than they formally are, that one seems to run into a problem of conservation of energy.
Just let us give an example. Imagine a photon, with energy-momentum (k,0,0,k) (in units where c = 1). Now, imagine that this photon "splits" into a virtual electron-positron pair.
Well, the electron will have energy-momentum (k-e1, l1, l2, k+l3) and the positron will have energy-momentum (e1,-l1,-l2,-l3).
Normally, for a real electron, we have the on-shell condition that
(k-e1)^2 = m^2 + l1^2 +l2^2 +(k+l3)^2, but in this case, this will not hold. What will hold is that the sum of the 4-momentum of the virtual positron and electron will equal the 4-momentum (k,0,0,k), so there will be perfect conservation of energy and momentum!
But the particles will not have the right "mass" (can even have imaginary mass).