ocohen
- 24
- 0
Homework Statement
Show that a sequence Sn will converge to a limit L if and only if Sn - L converges to 0
Homework Equations
{Sn} converges to L if and only if {Sn - L } converges to 0
The Attempt at a Solution
Is it enough to just say
{Sn} converges to L if and only if |Sn - L| < \epsilon if and only if |(Sn - L) - 0| < \epsilon if and only if {Sn - L}$ converges to 0
I'm learning this off a random pdf so I don't have the answers.
Is this enough? Any suggestions would be appreciated. Also is there a way to turn on Latex?