Tom McCurdy
- 1,017
- 1
Homework Statement
Show divergence theorem works
For the vector field E = \hat{r}10e^{-r}-\hat{z}3z
Homework Equations
\int_{v}\nabla \cdot E dv = \oint_{s} E \cdot ds
The Attempt at a Solution
\nabla \cdot E = 1/r \frac{d}{dr}(rAr)+1/r\frac{dA\phi}{d\phi}+\frac{dAz}{dz}
Ar=10e^(-r)
Aphi=0
Az=-3z
\nabla \cdot E = \frac{1}{r}(10e^{-r}-10re^{-r})+3
\int_{0}^{2\pi}\int_{0}^{4}\int_{0}^{2} (r)(\frac{1}{r}(10e^{-r}-10re^{-r})+3) dr dz d\phi = -82.77
\oint_{s} E \cdot ds= \int_{0}^{2} \int_{0}^{4} (\hat{r}10e^{-r}-\hat{z}3z)\cdot(16 \pi \hat{r}+4\pi\hat{z}) = 2341.7
wow that took awhile to type