Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Featured I Does the Principle of Least Action Have a Physical Meaning?

  1. Aug 8, 2018 #1
    I have found that some people say “yes, definitely”, and other days “no, definitely not”.

    Those who say “no” seem to regard PLA as merely a neat way of packaging the equations. Those who say “yes” seem to regard PLA as somehow fundamental. (There have actually been two recent books on this, Coopersmith’s The Lazy Universe and Albert Rojo’s book, the name of which slips my mind. Both seem to take PLA as fundamental.)

    Is there a consensus among physicists that I am unaware of? If not, why not?

    What could the physical meaning of PLA even be?
     
  2. jcsd
  3. Aug 8, 2018 #2

    FactChecker

    User Avatar
    Science Advisor
    Gold Member
    2017 Award

    The PLA expresses itself in innumerable physical ways. It can be used to derive the equations of motion in many settings (see https://en.wikipedia.org/wiki/Principle_of_least_action ). So the way things move are a direct physical consequence of the PLA. If that is not enough for a consensus, I don't know what would be.
     
  4. Aug 8, 2018 #3
    Someone recently argued to me that PLA is not fundamental. This is the gist of what he argued:

    If we consider a case like refraction, for example, the photon moves forward “locally”, and there doesn’t seem to be an sign of least action or optimization. But if we fix it’s initial and final points and study the path between them, we will find that the path is least in some variational sense. But that appears to be just an after-the-fact, purely mathematical, “global” result of our having summed the local actions. Since it is purely mathematical, there’s no reason to think of it as fundamental. It is a result of how we organize our mathematical expressions.
     
    Last edited: Aug 8, 2018
  5. Aug 8, 2018 #4

    Dale

    Staff: Mentor

    What is the criteria used to judge if something has “physical meaning”? The lack of consensus on the answer is probably more due to a lack of consensus about “physical meaning” than about the principle of least action.
     
  6. Aug 8, 2018 #5
    Dale, that’s certainly a good point. What I find is some physicists saying it’s just mathematical and some saying it has something that isn’t just mathematical about it. I think of Taylor et al.’s efforts in the 90s to use PLA to reform the physics undergrad introductory mechanics courses; their idea was that PLA is more meaningful even for students than the concepts of force, etc. Not to get into that, but that just suggests some idea of at least how the phrase gets used in these contexts.
     
  7. Aug 8, 2018 #6

    ZapperZ

    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor

    What exactly does "physical meaning" mean? What are you looking for?

    For example, what is the "physical meaning" of Newton's laws?

    Zz.
     
  8. Aug 8, 2018 #7

    FactChecker

    User Avatar
    Science Advisor
    Gold Member
    2017 Award

    Saying that it moves forward, rather than drifting sideways, seems like a simple, limited, local expression of the PLA. There are simple cases where the PLA is so obvious that it is not envoked by name. But that does not make it less fundamental -- just anonymous.
    The mathematical process of the calculus of variation is free to come up with any number of solutions in other contexts. The physics application of the PLA in larger, complicated, examples will just lead to results that reflect the PLA applied anonymously in the simple, obvious, physics case.
     
  9. Aug 8, 2018 #8

    Dale

    Staff: Mentor

    Well, if that is the criteria then it clearly has physical meaning. The people claiming it is just mathematical are obviously wrong given the mountain of experimental evidence supporting it.
     
  10. Aug 8, 2018 #9
    Let me try to give an example from some of this literature. (I am not fully clear on how the term is used either.)

    In one piece, the authors are trying to set up PLA just from reasoning about energy. They ask whether an object might minimize the sum of its KE and PE. They work out that, if this were so, then certain physical consequences would follow (things would accelerate away from each other, etc.). Since this is not what actually happens, they say that our guess that objects minimize the sum of KE and PE is “unphysical”. (Article: http://eftaylor.com/pub/ForceEnergyPredictMotion.pdf)

    That example is a little removed from the more general question of “physical meaning”, but I hope that including it can help clarify something anyway.
     
  11. Aug 8, 2018 #10

    ZapperZ

    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor

    It doesn't.

    If you ask for the "physical meaning" of something, then you must know of something in which you DO have a physical meaning that you are OK with. Clearly, since you didn't ask about the physical meaning of Newton's laws, you are fine with it. So I want to know, what is the "physical meaning" of Newton's laws that you are comfortable with that you do not have with the Least Action principle?

    Zz.
     
  12. Aug 8, 2018 #11

    Dale

    Staff: Mentor

    I think no one is, hence the disagreement. In other words, the discussion is not about physics but about semantics, specifically the semantics of “physical meaning”.
     
  13. Aug 8, 2018 #12
    To answer that, ZapperZ, let me say what I think the importance of this question is.

    In his Scholarpedia article on PLA, Chris Gray makes the point that action principles have been and are some of the most productive areas for research on unifying principles in physics (here: http://www.scholarpedia.org/article/Principle_of_least_action). If that is so, then it would seem to be worthwhile to examine them more carefully, so as to get a richer sense of what they do mean. Gray, for example, talks about “true” trajectories; by which he seems to mean those that a particle takes, as opposed to ones it doesn’t.

    My view is that PLA is fundamental in a physical way (i.e. more than mathematical). So, I agree with what basically everyone here has said so far.

    BUT I am interested in two things: 1. Why is it sometimes treated as if it does not have physical meaning? What are the arguments that it does not? 2. Why is it the case (as in my experience) that those who think it has physical meaning and those who think it is purely mathematical each regard their view as more or less obvious without giving the other view much consideration?

    If action principles are being studied for their potential to unify theories, then it would seem important to deal with problems in how to interpret them.

    That does not answer your question about what I think Newton’s laws mean, of course. But I’m trying to do something bigger than my own view here. (And, as I said, I do think PLA has some kind of physical meaning, although I don’t claim to know what that may be (beyond what one standardly finds in reference sources about minimizing action).)

    B. Hartmann, from Perimeter Institute, argues that PLA has the physical meaning of “minimal steering effort”. (Here: https://arxiv.org/abs/1307.0499) Hartmann’s goal in outlying this, as he says, is to find a solid ground for research on unifying principles of physics. But he doesn’t deal with claims that PLA is purely mathematical. Hence, my interest in those kinds of claims.
     
  14. Aug 8, 2018 #13

    ZapperZ

    User Avatar
    Staff Emeritus
    Science Advisor
    Education Advisor

    You still have not given me ANY example of something that, to you, has a "physical meaning", and why.

    Zz.
     
  15. Aug 8, 2018 #14

    Dale

    Staff: Mentor

    Before you can establish the importance of a question I think you need to establish the meaning of the question. Surely a meaningless question cannot be important.
     
  16. Aug 8, 2018 #15
    This all reminds me of Dale’s Insight piece on why discussions of what energy is go astray. I think the trouble here is that there is no textbook definition of physical meaning. Nevertheless. physicists, chemists, and engineers use the phrase “physical meaning” frequently enough and without seeming incoherence. On Physics Forums itself, there are a number of discussions about some equation or operation or other and its “physical meaning” —i.e. of the Lorentz transformation, etc. (Check it out: https://www.physicsforums.com/search/87328339/?q=“physical+meaning”&o=relevance .) On Google Scholar too, there are lots of books and articles from scientific journals and publishers (Springer, Taylor Francis, etc) on “the physical meaning of X”, where X is entropy, gauge-invariant variables, scratch hardness, etc. Of course, what each author means by it may well be different somewhat, but it can’t be the case that everyone means something completely different, since there’s so much written that tries to address it in some ways. (One could argue that it’s all rubbish, but I tend to side with the ordinary practice of scientists myself.)

    Really, all I’m looking for is to find out what the arguments are and what the evidence is that PLA has no physical meaning (whatever one might mean by that) or that it is purely mathematical. So far, everything we’ve talked about here has suggested that it does have physical meaning of some kind. I just want to be sure that that’s right by looking at all the evidence and arguments for the opposing view.

    ZapperZ, since my goal is to understand what the other views are on this, I don’t see that coming up with examples of what I think physical meaning is will do anything but distract from what this thread is about. I am willing to consider anything a reputable physicist or mathematician has called “physical meaning (or lack thereof) of PLA”. I agree with you that, if I were only willing to consider some limited types of account of the physical meaning of PLA, then, yes, I think I would have to give my own view in order to focus the discussion. But at this stage there is no reason to focus it that way. Since whether I should give examples of my view or not is not really a question about physics or the practice of physics, perhaps we should not go into it anymore here. (Feel free to message me to continue the discussion, though, if you’re interested.)
     
  17. Aug 8, 2018 #16

    Dale

    Staff: Mentor

    I disagree. In your OP you specifically mentioned the divergence of opinions. That is a clear indication of incoherence.

    It certainly can be the case, and to my view clearly it must be the case since the conclusions differ. Assuming that the scientists involved did not make an error then there must be a substantive difference in meaning.

    Then let’s do this. Pick two references you like, one pro and one con, and let’s see if we can identify either a substantive difference in their usage of “physical meaning” or an error in their analysis.
     
  18. Aug 8, 2018 #17

    fresh_42

    User Avatar
    2017 Award

    Staff: Mentor

    Does the Principle of Least Action Have a Physical Meaning?

    I have always considered it as the most fundamental physical principles of all together with the principle of least energy, which I think is correlated. You can basically develop the entire classical physics from there and even more. If not these have physical meaning, then nothing has.
     
  19. Aug 9, 2018 #18
    I found two interesting discussions of this over at Stack Exchange.

    https://physics.stackexchange.com/q...meaning-of-the-action-in-lagrangian-mechanics

    In this one, Neumaier (a contributor here too) says this (the voted best answer):

    “The action has no immediate physical interpretation, but may be understood as the generating function for a canonical transformation; see e.g., http://en.wikipedia.org/wiki/Hamilton-Jacobi_equation

    It’s interesting that he either doesn’t try to argue against the other views or he regards them as consistent with his. Possibly the latter?

    The answer right after his claims that PLA has a fundamental meaning in relativistic quantum mechanics, namely “least phase change”. Fascinating point! I’d never encountered it before.

    https://physics.stackexchange.com/questions/9686/the-meaning-of-action

    This discussion has different points to add, but I can’t see that anyone maintains here that PLA is just mathematical. (Maybe Lubos Motl’s point about definitions of concepts being used in tautologous ways, but it’s not clear to me.)
     
  20. Aug 9, 2018 #19

    fresh_42

    User Avatar
    2017 Award

    Staff: Mentor

    I got the impression that you confuse physical meaning by mathematical meaning. To me, and I think most of us, comes physical first and mathematical is merely a description of it in order to make certain situations quantifiable, and not the other way around. Even if you define physical meaning by the existence of a mathematical description, that description won't carry physical meaning in itself, and even less generates one.
     
  21. Aug 9, 2018 #20
    My mistake, then!

    I definitely think physical meaning “comes first”. The reason I’m interested in this question with regard to PLA is because I was disturbed by how it is sometimes said that PLA is “purely mathematical” (for one example of which see above). I started the thread to see what the arguments for that view are.

    But what you said made me remember something: in every instance I know of in which someone claims that PLA is “purely mathematical”—with the possible exception of Neumaier—the person who made the claim was a mathematician. So, maybe you’re right that this really is the root of why they say PLA doesn’t have a physical meaning.

    Thanks for the insight!
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted