Does wire length difference create phase shift?

AI Thread Summary
In wiring a 240 volt AC circuit, the assumption that L1 and L2 wires must be the same length to avoid phase shifts is largely unfounded, as significant phase shifts only occur with wire length differences of kilometers. Electricity travels at about one-third the speed of light, meaning that a 1-degree phase shift requires a difference of approximately 5 kilometers in wire length. Concerns about phase shifts are more relevant at higher frequencies, not typical household wiring frequencies like 50/60Hz. Proper installation practices, such as keeping wires twisted in a cable and ensuring they share the same path, help mitigate any potential issues. Overall, while it's good to be cautious, the magnitude of concern regarding wire length differences in this context is minimal.
yahastu
Messages
79
Reaction score
7
When wiring a 240 volt AC circuit, I've always assumed that it's important for L1 and L2 wires to be the exact same length, in order to avoid introducing a phase shift that would reduce peak voltage. Length differences can accumulate when the wires enter a panel and need to go slightly different places. However I can't find any information about this when I search. Is this true, or am i just being paranoid? is there any standards/ rules about this?
 
Engineering news on Phys.org
The short answer is that your sort of paranoid. The concept is absolutely correct, but you're way off in magnitude. If we assume that electricity travels at about 1/3 the speed of light in wires (a crude, but not unreasonable guess). Then the wavelength at 60Hz is roughly 2 million meters. So you can make a 1o phase shift if your wire lengths differ by about 5km.

That's why you can't find any info about it. No one worries about this at 50/60Hz. Engineers worry a lot about this stuff at very high frequencies.
 
  • Like
Likes anorlunda, yahastu and artis
@yahastu Basically what @DaveE said.
This would only be a problem if your house wiring worked on the mid Mhz and upwards frequency range, but then we wouldn't call it "house wiring" but "antenna looking like a house"

PS. I hope you took that advice we gave you in the other thread seriously before proceeding as I suppose you are with your "off grid" installation?
 
DaveE said:
The short answer is that your sort of paranoid. The concept is absolutely correct, but you're way off in magnitude. If we assume that electricity travels at about 1/3 the speed of light in wires (a crude, but not unreasonable guess). Then the wavelength at 60Hz is roughly 2 million meters. So you can make a 1o phase shift if your wire lengths differ by about 5km.

That's why you can't find any info about it. No one worries about this at 50/60Hz. Engineers worry a lot about this stuff at very high frequencies.
Awesome, thanks for explaining that. Makes sense!
artis said:
@yahastu Basically what @DaveE said.
This would only be a problem if your house wiring worked on the mid Mhz and upwards frequency range, but then we wouldn't call it "house wiring" but "antenna looking like a house"

PS. I hope you took that advice we gave you in the other thread seriously before proceeding as I suppose you are with your "off grid" installation?

The replies i received there did not seem to address to the questions i asked. However, after doing additional research, and consulting with another electrician, i feel fairly confident that i have found the answers to my questions.
 
yahastu said:
The replies i received there did not seem to address to the questions i asked.
They did, I for one explained why certain ideas you had were dangerous.
Anyway be careful, since it's your house you will suffer from any mistakes made.
 
yahastu said:
Length differences can accumulate when the wires enter a panel and need to go slightly different places. However I can't find any information about this when I search. Is this true, or am i just being paranoid? is there any standards/ rules about this?
You are fixating and overthinking some things, while not realising others.

Wires are often twisted in a cable, so that all conductors will have approximately the same length when the cable passes around a corner of the minimum design radius. The twist puts equal physical tension on all wires in the bundle, but it also keeps the accumulating electrical phase difference the same between conductors.

Once you separate the individual conductors from the bundle, it becomes critically important that the wires of one circuit share the same path through a metal frame, and always pass together through only one hole in a metal bulkhead. The external magnetic fields of the two or three circuit conductors can only cancel if the wires follow the same magnetic path. If the circuit wires were to pass through separate holes in a steel bulkhead, the magnetic field in the material between the holes would be multiple times that of a single conductor.
 
  • Like
Likes Averagesupernova
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
I am not an electrical engineering student, but a lowly apprentice electrician. I learn both on the job and also take classes for my apprenticeship. I recently wired my first transformer and I understand that the neutral and ground are bonded together in the transformer or in the service. What I don't understand is, if the neutral is a current carrying conductor, which is then bonded to the ground conductor, why does current only flow back to its source and not on the ground path...
Back
Top