troyofyort
- 2
- 0
So I have to evaluate the integral from y=0 to y=1 of(the integral from x=(y^(1/2)) to x=1 of ((x^3)+1)^(1/2)dx)dy.
I've substituted the ((x^3)+1) with sec^2(u) since I used tan^2(u)=x^3. I'm wondering if this is the correct (or even a good) manner of solving this because I'm ending up with a very difficult equation to integrate anyways with odd bounds?
I've substituted the ((x^3)+1) with sec^2(u) since I used tan^2(u)=x^3. I'm wondering if this is the correct (or even a good) manner of solving this because I'm ending up with a very difficult equation to integrate anyways with odd bounds?