Double Integral Over General Region

vandyboy73191
Messages
7
Reaction score
0

Homework Statement



1. Find the volume of the solid which is under the surface z = 2x + y2 and above the region bounded by x = y^2 and x = y^3.

Homework Equations


The Attempt at a Solution



So first I graphed x=y^3 and x=y^2. (http://h.imagehost.org/view/0716/Math_Problem )
I found their points of intersection (y=1 or y =0).
Set up double integral as Integral from 0 to 1 Integral from y^2 to y^3 of (2x+y^2) dx dy
where y^2<x<y^3 and 0<y<1

I calculated the integral and got 1/7 plus 1/6 minus 2/5Is my work correct?
 
Last edited by a moderator:
Physics news on Phys.org
Your answer is almost right; your sign is wrong. It should be 2/5 - 1/7 - 1/6 = 19/210
For each horizontal strip, the left boundary is x = y^3 and the right boundary is x = y^2. You have them reversed in your inner integral, which gives you the opposite sign.
 
Based on your picture, shouldn't it be y=x^3 and x=y^2?

However, if you did write the equations correctly, then you've drawn the region wrong.
 
vandyboy's graph for x = y^3 is incorrect. He has actually drawn the graph of y = x^3.
 
Oops. Yeah I just noticed that. thanks guys
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top