Doubt about condition solutions of complex line equation

PcumP_Ravenclaw
Messages
105
Reaction score
4
Dear All,
Please help me clear some doubts about Theorem 3.3.1 in the 1st attachment.
The condition ## |a| = |b| ## has only 8 cases right? ## { x+iy. x - iy, -x + iy, -x - iy, y + ix, y - ix, -y + ix, -y - ix } ##

so for the condition ## |a| = |b| ## and ## b \bar c = \bar a c ## in (2) and (3) in the attachement, what must ##b## and ##\bar a## be for them to to satisfy this equation given that C is a complex number of the form ## Cx + iCy ##.

why is there a line of solutions in (3)? usually you only get one imaginary and one real value for z right??

In the 2nd attachement, I have tried to do question 3. what does in the direction of b mean? does it pass through b also?? c =0 right? can you please give examples of the complex number b?

Danke...
 

Attachments

  • Capture-comlexeqn.JPG
    Capture-comlexeqn.JPG
    17.7 KB · Views: 515
  • Captureerq.JPG
    Captureerq.JPG
    9.7 KB · Views: 456
Last edited:
Physics news on Phys.org
PcumP_Ravenclaw said:
Dear All,
Please help me clear some doubts about Theorem 3.3.1 in the 1st attachment.
The condition ## |a| = |b| ## has only 8 cases right? ## { x+iy. x - iy, -x + iy, -x - iy, y + ix, y - ix, -y + ix, -y - ix } ##
No, and how are x + iy, x - iy, etc. conditions? These are complex numbers. I don't see that they are conditions in any way. For example, consider a = 0 + 1i and b = -1/2 + (√3/2)i. These two complex numbers have the same magnitude, but I don't see how they are included in your eight cases, whatever it is you mean by them.

PcumP_Ravenclaw said:
so for the condition ## |a| = |b| ## and ## b \bar c = \bar a c ## in (2) and (3) in the attachement, what must ##b## and ##\bar a## be for them to to satisfy this equation given that C is a complex number of the form ## Cx + iCy ##.

why is there a line of solutions in (3)? usually you only get one imaginary and one real value for z right??

In the 2nd attachement, I have tried to do question 3. what does in the direction of b mean?
b is a complex number, so you can think of it as being a vector, with its tail at the origin and its head at the point in the complex point (b1, b2). What direction does it point?
PcumP_Ravenclaw said:
does it pass through b also?? c =0 right? can you please give examples of the complex number b?

Danke...
 
  • Like
Likes PcumP_Ravenclaw
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top