- #1

Amanda H

- 3

- 0

You are using an out of date browser. It may not display this or other websites correctly.

You should upgrade or use an alternative browser.

You should upgrade or use an alternative browser.

- Thread starter Amanda H
- Start date

- #1

Amanda H

- 3

- 0

- #2

cnh1995

Homework Helper

Gold Member

- 3,480

- 1,163

I believe the negative sign in the Lenz's law says that the induced emf "opposes" its cause i.e. change in flux. This means the emf is induced in such a way that the resulting current would try to make up for the change in the original flux.

Look up dot convention in inductors (or transformers). Direction of emf induced between two ends of a coil depends on the sense of the winding.

- #3

Amanda H

- 3

- 0

https://www.google.co.uk/search?q=c...&q=flux+and+induced+emf&imgrc=rd3_kOmysfILDM:

- #4

cnh1995

Homework Helper

Gold Member

- 3,480

- 1,163

IMO, the signs of dΦ/dt and induced emf E should be opppsite while drawing the graph.Thank you for helping out. So, what you are saying is that the negative sign in the equation can be ignored when drawing graphs and that the Emf can either lead or lag as this is simply due to the winding...?? This is what I thought but if you see the following link the explanation of the Emf graph describes a positive and negative gradient of the flux...

https://www.google.co.uk/search?q=current+and+induced+emf+graphs&rlz=1C1VFKB_enGB657GB658&tbm=isch&tbo=u&source=univ&sa=X&ved=0ahUKEwiZmI-xpaTRAhVIKMAKHUypDz4QsAQITA&biw=866&bih=452#tbm=isch&q=flux+and+induced+emf&imgrc=rd3_kOmysfILDM:

The flux Φ only increases or decreases and increasing Φ gives positive dΦ/dt while decreasing Φ gives a negative dΦ/dt. But induced emf E has two possible directions depending on dΦ/dt and winding direction. Out of these two directions, we can't determine which one is positive and which one is negative. So, I think the correct way to draw the graph of emf is

1)Draw the graph of flux.

2)Compute the magnitude of E using dΦ/dt.

3) Considering the sign of dΦ/dt, attach the opposite sign to the emf E and draw its graph, regardless of its direction.

This means the induced emf should always lag behind the flux by 90°.

Corrections are welcome.

Share:

- Last Post

- Replies
- 2

- Views
- 321

- Replies
- 4

- Views
- 746

- Last Post

- Replies
- 1

- Views
- 877

- Last Post

- Replies
- 3

- Views
- 1K

- Replies
- 9

- Views
- 667

- Replies
- 78

- Views
- 4K

- Last Post

- Replies
- 1

- Views
- 564

- Replies
- 3

- Views
- 758

- Last Post

- Replies
- 2

- Views
- 610

- Replies
- 7

- Views
- 1K