Thanks, Bill_K, I didn't know that before. A quick proof for the eager:
\begin{align*}\widetilde{F}^{\mu\nu}\widetilde{F}_{\mu\nu} &= \frac{1}{4}\epsilon^{\mu\nu\rho\sigma}\epsilon_{\mu\nu\alpha\beta}F_{ \rho \sigma}F^{\alpha\beta} = \frac{1}{2}\delta_{\alpha \beta}^{\rho\sigma}F_{\rho\sigma}F^{\alpha \beta} = \delta^{[\rho}_{\alpha}\delta^{\sigma]}_{\beta}F_{\rho\sigma}F^{\alpha\beta} = \frac{1}{2}(\delta^{\rho}_{\alpha}\delta^{\sigma}_{\beta} - \delta^{\sigma}_{\alpha}\delta^{\rho}_{\beta})F_{\rho\sigma}F^{\alpha \beta} =\\ &= \frac{1}{2}(F_{\rho\beta}F^{\rho\beta} - F_{\beta\sigma}F^{\sigma\beta}) = \frac{1}{2}(F_{\mu\nu}F^{\mu\nu}+F_{\mu\nu}F^{\mu\nu}) = F_{\mu\nu}F^{\mu\nu}\,.\end{align*}
The contracted term of dual and ... ugh... normal tensor is effectively zero (a 4-divergence, doesn't change the EOM):
\begin{align*}F_{\mu\nu}\widetilde{F}^{\mu\nu} &= \epsilon^{\mu\nu\rho\sigma}F_{\mu\nu}F_{\rho\sigma} = \epsilon^{\mu\nu\rho\sigma}(\partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu})(\partial_{\rho}A_{ \sigma} - \partial_{\sigma}A_{\rho}) = \epsilon^{\mu\nu\rho\sigma}(\partial_{\mu}A_{\nu})(\partial_{\rho}A_{ \sigma}) =\\ &= \epsilon^{\mu\nu\rho\sigma}\partial_{\mu}(A_{\nu}\partial_{\rho}A_{ \sigma}) = 0\,,\end{align*}
since
\begin{align*}\epsilon^{\mu\nu\rho\sigma}\partial_{\mu}(A_{\nu}\partial_{\rho}A_{\sigma}) = \epsilon^{\mu\nu\rho\sigma}[(\partial_{\mu}A_{\nu})(\partial_{\rho}A_{\sigma}) + A_{\nu}\partial_{\mu}\partial_{\rho}A_{\sigma}]\,.\end{align*}
Putting the calculus aside, any suggestions from the literature on the matter? I've copies of Peskin&Schröder, Zee, Srednicki and other classics.