Dumb question about electronic structure

AI Thread Summary
Electrons with parallel spin experience greater repulsion compared to those with opposite spin due to their similar magnetic fields. This principle explains why electrons in atomic subshells are paired with opposite spins to minimize repulsion. The discussion also highlights that two orbitals with one occupied by two electrons (paired) and another occupied singly will have less repulsion than two orbitals both occupied singly. Therefore, the repulsion is indeed greater in the latter scenario. Understanding these interactions is crucial for grasping electronic structure in atoms.
chriswwt
Messages
5
Reaction score
0
I want to ask which type of the following would have a greater repulsion
electrons with parallel spin, electrons with opposite spin.
or it's just the same?
 
Physics news on Phys.org
Seems equivalent to asking what happens when two bar magnets are brought together?
 
Hi christwwt,

Electrons with parallel spin would experience greater repulsion than those with opposite spin. This is also the reason why electrons occupying the atomic subshells(1s,2s,2p,3s etc) are always paired in opposite spins.
 
thanks.
is that mean 2 orbitals with one occupied by 2 electrons and other with electron occupied singly,
and 2 orbitals both single occupied.
The repulsion between the latter one is greater than the former one?
 
This is from Griffiths' Electrodynamics, 3rd edition, page 352. I am trying to calculate the divergence of the Maxwell stress tensor. The tensor is given as ##T_{ij} =\epsilon_0 (E_iE_j-\frac 1 2 \delta_{ij} E^2)+\frac 1 {\mu_0}(B_iB_j-\frac 1 2 \delta_{ij} B^2)##. To make things easier, I just want to focus on the part with the electrical field, i.e. I want to find the divergence of ##E_{ij}=E_iE_j-\frac 1 2 \delta_{ij}E^2##. In matrix form, this tensor should look like this...
Thread 'Applying the Gauss (1835) formula for force between 2 parallel DC currents'
Please can anyone either:- (1) point me to a derivation of the perpendicular force (Fy) between two very long parallel wires carrying steady currents utilising the formula of Gauss for the force F along the line r between 2 charges? Or alternatively (2) point out where I have gone wrong in my method? I am having problems with calculating the direction and magnitude of the force as expected from modern (Biot-Savart-Maxwell-Lorentz) formula. Here is my method and results so far:- This...
Back
Top