Complex Systems are systems that comprise many interacting parts with the ability to generate a new quality of macroscopic collective behavior the manifestations
of which are the spontaneous formation of distinctive temporal, spatial or functional
structures. Models of such systems can be successfully mapped onto quite diverse
“real-life” situations like the climate, the coherent emission of light from lasers,
chemical reaction-diffusion systems, biological cellular networks, the dynamics of
stock markets and of the internet, earthquake statistics and prediction, freeway traf-
fic, the human brain, or the formation of opinions in social systems, to name just
some of the popular applications.
Although their scope and methodologies overlap somewhat, one can distinguish
the following main concepts and tools: self-organization, nonlinear dynamics, synergetics, turbulence, dynamical systems, catastrophes, instabilities, stochastic processes, chaos, graphs and networks, cellular automata, adaptive systems, genetic algorithms and computational intelligence.