E+e- -> gamma f0 -> gamma pi0 pi0 cross section with VMD

liberulo
Messages
1
Reaction score
0
e+e- --> gamma f0 --> gamma pi0 pi0 cross section with VMD

Homework Statement



Find the cross-section of ##e^+e^- \to \gamma f_0(980) \to \gamma \pi^0 \pi^0## using the vector meson dominance model.

Homework Equations



Some Feynman's rules:

The photon propagator is -i \frac{g_{\mu\nu}}{q^2}.
The propagator of ##\varphi##-meson is ##-i \frac{g_{\mu\nu} - \frac{q_\mu q_\nu}{m_\varphi^2}}{q^2 - m_\varphi^2 + i m_\phi \Gamma_\varphi}##, ##\Gamma_\varphi## - the particle width .
The ##\gamma \varphi##-vertex is ##-i e \frac{m_\varphi^2}{g_\varphi}##.
##g_{\varphi \omega f_0}## is the ##\varphi \omega f_0##-vertex constant.

The Attempt at a Solution


The effective Lagrangian is
<br /> \mathcal{L} = \mathcal{L}_{QED} + \mathcal{L}_{em} + \mathcal{L}_{str},<br />
where
<br /> \mathcal{L}_{str} = g_{\varphi \omega f_0} {F_\varphi}^{\alpha \beta} {F_\omega}^{\mu \nu} \varepsilon_{\alpha \beta \mu \nu} f_0 + g_{f_0 \pi^0 \pi^0} f_0 \pi \pi,<br />
<br /> \mathcal{L}_{em} = -e \frac{{m_\varphi}^2}{g_\varphi} \Phi^\mu A_\mu -e \frac{{m_\omega}^2}{g_\omega} \Omega^\mu A_\mu.<br />
## \Phi^\mu, \Omega^\mu, A_\mu, f_0, \pi ## - ##\varphi##, ##\omega##, photon, ##f_0##, ##\pi^0## fields.

After that I try to write the matrix element for the ##e^+e^- \to \gamma f_0(980) \to \gamma \pi^0 \pi^0## diagram. There is my trouble.
<br /> i M = \bar{v} (-i e \gamma_\mu ) u \cdot <br /> \left(-i \frac{g^{\mu \nu}}{q^2} \right)<br /> \left( -ie \frac{m_\varphi^2}{g_\varphi}\right)<br /> \left( -i \right) \frac{g_{\nu\alpha} - \frac{q_\nu q_\alpha}{m_\varphi^2}}{q^2 - m_\varphi^2 + i m_\varphi \Gamma_\varphi} g_{\varphi \omega f_0}<br /> \left( -i \right) \frac{g^{\alpha \beta} - \frac{k^\alpha k^\beta}{m_\omega^2}}{k^2 - m_\omega^2 + i m_\omega \Gamma_\omega} <br /> \left( -ie \frac{m_\omega^2}{g_\omega}\right)<br /> \cdot \\ \cdot<br /> ( k^\tau {\epsilon_{\gamma}}^\sigma - k^\sigma {\epsilon_{\gamma}}^\tau )<br /> \varepsilon_{\tau \sigma ? ?}<br /> \cdot<br /> \frac{-i}{r^2 - m_{f_0}^2 + i m_{f_0} \Gamma_{f_0}} g_{f_0 \pi^0 \pi^0}<br /> .<br />
k - the radiative photon four-momentum, ##\epsilon_{\gamma}## - the photon polarization, r - ##f_0## four-momentum.
 
Last edited:
Physics news on Phys.org
Then I will calculate the cross section, but I don't know how to write the matrix element correctly. Please, help me!
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top