E1 vs E2 Mechanisms: Understanding Catalysts

  • Thread starter Thread starter MathewsMD
  • Start date Start date
AI Thread Summary
E1 mechanisms favor tertiary carbocations, while E2 mechanisms are more common with primary carbocations, with secondary carbocations depending on intermediate stability. The catalyst OEt- cannot be used in E1 reactions because the mechanism first forms a carbocation, making the alpha proton more acidic, allowing weaker bases like water to suffice. Stronger bases like OEt- can inhibit E1 reactions by deprotonating protonated intermediates, preventing the reaction from progressing. In contrast, E2 reactions require a strong base to abstract the alpha proton in a concerted step. Thus, while a strong base can be used in E1, it is not necessary and can hinder the reaction.
MathewsMD
Messages
430
Reaction score
7
Hi,

I'm just reviewing E1 and E2 mechanisms and I had one question regarding the catalysts. I've attached the image for the 2 reactions I have a question about.

I understand E1 mechanisms are more common for reactions with tertiary carbocation intermediates while E2 is more common for primary, and that E1 or E2 would occur for secondary (though it would depend on the intermediate stabilities, correct?). In the image posted, there are 2 reactions (E1 and E2) with the same original reagent. I just don't quite understand why OEt-, the catalyst for the E2 mechanism, cannot be used for the E1 mechanism (i.e. why is water used as opposed to OEt-?). They both seem to be LB, though OEt- stronger, and I would presume OEt- can be used as a catalyst for the E1 mechanism, but it appears not. Is there any particular reason why using OEt- (or any other molecule like OCH3-) does not lead to the E1 mechanism but instead to E2 only? Does it have to do with water being a smaller molecule and allowing the reaction to not be stereoselective? Why cannot the stronger LB like OEt- lead to the E1 mechanism?
 

Attachments

  • Screen Shot 2014-10-11 at 1.22.54 PM.png
    Screen Shot 2014-10-11 at 1.22.54 PM.png
    9.3 KB · Views: 7,324
  • Like
Likes Apleo
Chemistry news on Phys.org
Take a look at your final (not alkene) products: for E2, you get neutral ethanol, whereas for E1, you get H3O+, a charged species. The answer to your question has to do with the acidity of the alpha proton (the hydrogen on the carbon next to the leaving group). In an E2 reaction, a Lewis base abstracts the alpha proton and the leaving group leaves in a concerted manner ("concerted" just means "at the same time"). Since the alpha proton isn't particularly acidic in this case, you need a pretty strong base to pull it off. In the case of an E1 mechanism, though, the leaving group is abstracted first, and what you're left with is a hydrogen which is alpha to a carbocation. In this case, the carbocation is highly electron withdrawing (as a result of its being positively charged), and the alpha proton becomes extremely acidic. Therefore, the base you need to pull off the remaining proton doesn't have to be nearly as strong (in this case, H2O is a much weaker base than OEt-).
 
TeethWhitener said:
Take a look at your final (not alkene) products: for E2, you get neutral ethanol, whereas for E1, you get H3O+, a charged species. The answer to your question has to do with the acidity of the alpha proton (the hydrogen on the carbon next to the leaving group). In an E2 reaction, a Lewis base abstracts the alpha proton and the leaving group leaves in a concerted manner ("concerted" just means "at the same time"). Since the alpha proton isn't particularly acidic in this case, you need a pretty strong base to pull it off. In the case of an E1 mechanism, though, the leaving group is abstracted first, and what you're left with is a hydrogen which is alpha to a carbocation. In this case, the carbocation is highly electron withdrawing (as a result of its being positively charged), and the alpha proton becomes extremely acidic. Therefore, the base you need to pull off the remaining proton doesn't have to be nearly as strong (in this case, H2O is a much weaker base than OEt-).

Yes. Thank you. Just to clarify: the base you need to pull of the remaining proton therefore doesn't have to be nearly as strong, but can't it still be strong and still allow the mechanism to proceed? Why can't EtO- be used for both reactions? (i.e. for the E2 mechanism, it uses only EtO- and has only one product, but why can't both products, like formed in the E1 pathway, be made if you already have a strong enough base?)
 
  • Like
Likes Apleo
You can use a stronger base. You just don't have to. But I have to caution you that this isn't always true. Think about acid-catalyzed dehydration proceeding through an E1 mechanism. In this case, the first step is to protonate a hydroxyl to -OH2+, which then eliminates as water, at which point a weak base (usually water in this case) can remove the remaining alpha proton. If you try to use a strong base in a reaction like this, you'll just end up deprotonating the protonated hydroxyl -OH2+, turning it back into an -OH group. In this case, the use of a strong base won't push the reaction forward.
 
I want to test a humidity sensor with one or more saturated salt solutions. The table salt that I have on hand contains one of two anticaking agents, calcium silicate or sodium aluminosilicate. Will the presence of either of these additives (or iodine for that matter) significantly affect the equilibrium humidity? I searched and all the how-to-do-it guides did not address this question. One research paper I found reported that at 1.5% w/w calcium silicate increased the deliquescent point by...
Back
Top