Easy matrix/determinants question

  • Thread starter Thread starter astonmartin
  • Start date Start date
astonmartin
Messages
23
Reaction score
0

Homework Statement



Suppose A and B are 3 x 3 matrices and det A = x ≠ 0 while det B = y. Let
C be the matrix ((2A)^-1 )B <-- (2A) inverse x B

then det C is:

Homework Equations

The Attempt at a Solution



det(2A) = 2x, so det 2A inverse = 1/(2x)
det C = y/(2x)...which is not one of the solutions

a) y/8x b) 2xy c) -2y/x d) 2y/x e) 8y/x

what am I missing here?
 
Physics news on Phys.org
You are very close; however,

\det(\alpha A)=\alpha^{n} \det(A)

where n is the order of the matrix A, in this case 3. To understand why this happens, think of the determinant of the identity and multiply it by a scalar.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top