Effect of moment of inertia on rolling distance

AI Thread Summary
A disk and a hoop of the same mass and diameter, when given the same torque and then allowed to roll freely, will roll the same distance but the disk will reach the endpoint first due to its lower moment of inertia. The disk achieves a higher maximum linear velocity compared to the hoop. The difference in their mass moment of inertia affects the ratio of rotational kinetic energy to translational kinetic energy, influencing their acceleration and travel time. Higher rotational kinetic energy indicates more energy is being converted to rotation, which can impact the overall dynamics of the rolling motion. The discussion highlights the importance of considering factors like friction and drag in analyzing rolling distances.
Poligon
Messages
22
Reaction score
0
Hi everyone, good day. this might be a simple question, but I need someone to check my answer.
A disk and a hoop, of same mass and same diameter, is first giving a torque (same amount of torque for both) then the torque is removed (the torque is acting on them for the exact same period of time), causing them to roll freely without slip. The question is, which one will roll further?
My answer to the question will be, both will roll the same distance. However, the disk will arrive at the end point first while the hoop will arrive at the end point later. Other than that, the disk will achieve higher maximum linear velocity in the process.
Is my answer correct? This is because they are being given same amount of energy. thus the distance they can roll should be the same.
Other than that, due to the different in mass moment of inertia, the rotational kinetic energy to translational kinetic energy ratio for disk and hoop is different. I am actually curious on what does this ratio implies? Higher ratio means more energy given is being converted to rotational KE, so? what does higher rotational KE implies? It got to be have effect on something, like the traveling time, the distance traveled, something like that. Can anyone relates these to me? Thank you very much for your time!
 
Physics news on Phys.org
Hi everyone, First of all, I am very sorry that I misplaced the post.
Next, I noticed that the question is viewed by 135 people, but no replies. Am I not putting enough effort in solving my question? But i think i have first answered my question right?
I am new here, so please tell me if i overlooked any rules.
I really wish to know the answer to the questions.
Thank you!
 
If the only force acting on the rolling objects is friction with the surface they roll upon, then I think your answer is correct. However, if you take drag into consideration, things may be different.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top