Effective density & Intrinsic carrier concentration

Mimi
Messages
11
Reaction score
0

Homework Statement


Given "n=Nc*e-(Ec-Ef)/KT", prove "n=ni*e(Ef-Efi)/KT"


Homework Equations


Quasi-Fermi Energies..? Ef is Fermi level (extrinsic) and Efi is Fermi level (intrinsic). Ec is Fermi level (conduction).


The Attempt at a Solution


Very honestly, I cannot figure out how to start...
I know the value of "Nc", but I don't know how to deal with "ni" to prove the relationship.
 
Physics news on Phys.org
Is there given any relation between Nc and ni ?
Can you say more about Nc? What is the expression of Nc??
 
Nc=2[(2pi*m*KT)/h^2]^(3/2). (m=m*, effective mass for n)
ni^2=NcNv*e^-(Ec-Ev)/KT.
These are the only values I know...
 
Mimi said:
Nc=2[(2pi*m*KT)/h^2]^(3/2). (m=m*, effective mass for n)
ni^2=NcNv*e^-(Ec-Ev)/KT.
These are the only values I know...

You have Nc and Nv, i guess Nv is something related to the holes, right?
having Nv=2[(2pi*m*KT)/h^2]^(3/2). (m=m*, effective mass for p)
and p=Nv*e-(Ef-Ev)/KT. :blushing:

Consider intrinsic semiconductor case (ie n=p=ni)
we denote the intrinsic Fermi level as Efi and
n=Nc*e-(Ec-Ef)/KT
gives
ni=Nc*e-(Ec-Efi)/kT

Then, it can be seen that
n=ni*e(Ef-Efi)/KT

Notes: This result can be applied to any non-degenerate semiconductor (ie not just intrinsic/undoped semiconductor)

Once little thing i want to confirm is that,
what i learn for Nc is as a form of 2[(m*KT)/2pi*h^2]^(3/2) but not 2[(2pi*m*KT)/h^2]^(3/2).
Are you using cgs unit system?? I don't know this makes the difference or not...:redface:
 
oh..I see.
Thank you so much tnho!
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top