Efficiency of a Simple 3-Stage Ideal Gas Cycle: Analyzing Thermal Efficiency η

AI Thread Summary
The discussion focuses on analyzing the thermal efficiency (η) of a simple 3-stage ideal gas cycle, which involves cooling, heating, and adiabatic expansion of the gas. The participants derive the efficiency formula, highlighting the relationship between work done and heat added during the cycle, emphasizing that η is defined as the work done over the heat entered. There are concerns about potential errors in calculations leading to an incorrect efficiency greater than one, and the importance of distinguishing between work done by the gas and work done on the gas is noted. The conversation suggests simplifying the algebra by considering the total heat added during the cycle, which includes contributions from both constant volume and constant pressure processes. The final aim is to accurately express η in terms of the heat capacities and the gas properties.
Toby_phys
Messages
26
Reaction score
0
A possible ideal-gas cycle operates as follows:

1. From an initial state (##p_1##, ##V_1##) the gas is cooled at constant pressure to (##p_1##, ##V_2##); Let's call the start and end temperature ##T_1## and ##T_2##

2.The gas is heated at constant volume to (##p_2##, ##V_2##);Lets call the start and end temperature ##T_2## and ##T_3##

3.The gas expands adiabatically back to (##p_1##, ##V_1##). Let's call the start and end temperature ##T_3## and ##T_1##
Assuming constant heat capacities, show that the thermal efficiency η is

$$
\eta=1-\gamma\frac{V_2/V_1 -1}{p_2/p_1-1}
$$Efficiencey is defined as: $$\eta=\frac{W}{Q_h}$$ the work done over the heat entered. The heat enters at stage 2 (and some leaves at stage 1 but that doesn't matter). So I need to find the heat entered at stage 2 and the work done.

**Stage 1:**

From the ideal gas equation we get:
$$
p_1V_1=nRT_1, \ \ \ \ p_2V_2=nRT_2 \implies \frac{T_2}{T_1}=\frac{V_2}{V_1}
$$

The work done is just force times distance which is pressure times change in volume:

$$
\Delta W=-p_1\Delta V=-p_1(V_2-V_1)
$$
**Stage 2:**

It doesn't change in volume and so no work is done. However heat is put into the system, increasing the pressure. We need to find this heat.

##\Delta U= Q_h##

For an ideal gas we have:
$$
\Delta U= C_v\Delta T=C_v(T_3-T_2)
$$

Where ##C_v## is heat capacity at constant volume.

**Stage 3:**

Stage 3 is adiabatic so ##\Delta U=\Delta W=C_v(T_1-T_3)##

We also have, using the ideal gas law:
$$
T_3=\frac{p_2V_2}{p_1V_1}T_1
$$Let us sub this into the efficiency:

$$
\eta=\frac{C_v(T_1-T_3)-p_1(V_2-V_1)}{C_v(T_3-T_2)}
$$

If we get ##T_3## and ##T_2## in terms of ##T_1## and sub these in we get:

$$
\eta=-1-\frac{p_1(V_2-V_1)}{C_vT_1(\frac{p_2V_2}{p_1V_1}-\frac{V_2}{V_1})}
$$
And with the ideal gas law, with ##n=1## for simplicity we get ##T_1=\frac{p_1V_1}{R}##

$$
\implies\eta=-1-\frac{R(V_2/V_1-1)}{C_vT_1(\frac{p_2V_2}{p_1V_1}-\frac{V_2}{V_1})}
$$

##R=C_p-C_v## and ##\gamma=C_p/C_v##

$$
\implies\eta=-1-\frac{(\gamma-1)(V_2/V_1-1)}{C_vT_1(\frac{p_2}{p_1}-1)\frac{V_2}{V_1}}
$$

I have no real clue really if this is right or wrong.
 
Physics news on Phys.org
Toby_phys said:
Stage 3 is adiabatic so ##\Delta U=\Delta W=C_v(T_1-T_3)##
How did you get this for an adiabatic process?
 
kuruman said:
How did you get this for an adiabatic process?

##dq=0## for adiabatic process I think
 
Toby_phys said:
Assuming constant heat capacities, show that the thermal efficiency η is

$$
\eta=1-\gamma\frac{V_2/V_1 -1}{p_2/p_1-1}
$$
This can't be correct since it yields ##\eta > 1##. Note ##p_2 > p_1## and ##V_2 < V_1##.
Efficiencey is defined as: $$\eta=\frac{W}{Q_h}$$ the work done over the heat entered.
OK. But ##W## represents the work done by the gas. Later in your work, it looks like you calculate the work done on the gas. This can lead to sign errors.

Let us sub this into the efficiency:

$$
\eta=\frac{C_v(T_1-T_3)-p_1(V_2-V_1)}{C_v(T_3-T_2)}
$$

If we get ##T_3## and ##T_2## in terms of ##T_1## and sub these in we get:

$$
\eta=-1-\frac{p_1(V_2-V_1)}{C_vT_1(\frac{p_2V_2}{p_1V_1}-\frac{V_2}{V_1})}
$$
Looks like maybe you made an error in getting the -1 part of the second equation above. Note that the denominator of the first equation does not cancel the first term of the numerator of the first equation to yield -1.

I think the algebra will be simpler if you use the fact that the work done by the gas during the cycle equals the total heat added during the cycle. (WHY?)

The heat added consists of heat added at constant volume and heat added at constant pressure. So you can write the work as the sum of two terms with the first term involving ##C_V## and the second term involving ##C_P##.

You know that the heat , ##Q_h##, is for the constant volume process and therefore involves ##C_V##. So, when you set up the efficiency, you will find that the ratio of ##C_P## to ##C_V## will pop up in the algebra and that will give you the ##\gamma## factor you need.
 
Last edited:
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Trying to understand the logic behind adding vectors with an angle between them'
My initial calculation was to subtract V1 from V2 to show that from the perspective of the second aircraft the first one is -300km/h. So i checked with ChatGPT and it said I cant just subtract them because I have an angle between them. So I dont understand the reasoning of it. Like why should a velocity be dependent on an angle? I was thinking about how it would look like if the planes where parallel to each other, and then how it look like if one is turning away and I dont see it. Since...
Back
Top