courtrigrad
- 1,236
- 2
How do you evaluate \frac{1}{x\ln x} by integration by parts. I tried doing this doing the following:
u = \frac{1}{\ln x}, du = \frac{-1}{x(\ln x)^{2}}, dv = \frac{1}{x}, v = \ln x. So I get:
\int udv = uv-\int vdu = 1 + \int \frac{1}{x\ln x} = \int \frac{1}{x\ln x}. I know the answer is \ln(\ln x)
Thanks
u = \frac{1}{\ln x}, du = \frac{-1}{x(\ln x)^{2}}, dv = \frac{1}{x}, v = \ln x. So I get:
\int udv = uv-\int vdu = 1 + \int \frac{1}{x\ln x} = \int \frac{1}{x\ln x}. I know the answer is \ln(\ln x)
Thanks
Last edited: