dcl
- 54
- 0
Here is the problem:
{\mathop{\rm Im}\nolimits} \int {e^{x(2 + 3i)} } dx
One sec, I'm having another go at it.
<br /> = {\mathop{\rm Im}\nolimits} \int {e^2 } e^{3ix} dx
<br /> = {\mathop{\rm Im}\nolimits} \int {e^2 } [\cos (3x) + i\sin (3x)]dx<br />
<br /> \begin{array}{l}<br /> = \frac{{ - e^2 \cos (3t)}}{3} \\ <br /> \end{array}<br />
How'd I go?
{\mathop{\rm Im}\nolimits} \int {e^{x(2 + 3i)} } dx
One sec, I'm having another go at it.
<br /> = {\mathop{\rm Im}\nolimits} \int {e^2 } e^{3ix} dx
<br /> = {\mathop{\rm Im}\nolimits} \int {e^2 } [\cos (3x) + i\sin (3x)]dx<br />
<br /> \begin{array}{l}<br /> = \frac{{ - e^2 \cos (3t)}}{3} \\ <br /> \end{array}<br />
How'd I go?
Last edited: