UrbanXrisis
- 1,192
- 1
which of the following functions is an eigenfunction of the momentum "operator"
-i \hbar \frac{\partial}{\partial x}:
f_1 =cos(kx- \omega t)
f_2 =e^{a^2x}
f_3 =e^{-(\omega t+kx)}
for this question, I'm not sure what they are looking for...
for f1
i \hbar k sin(k x -\omega t)
for f2
-i \hbar a^2 e^{a^2x}
for f3
- \hbar ke^{-(\omega t+kx)}
the eigenvalues for f1 is -k^2
the eigenvalues for f2 is a^2
the eigenvalues for f3 is -ik
how do I find the correct eigenfunction?
-i \hbar \frac{\partial}{\partial x}:
f_1 =cos(kx- \omega t)
f_2 =e^{a^2x}
f_3 =e^{-(\omega t+kx)}
for this question, I'm not sure what they are looking for...
for f1
i \hbar k sin(k x -\omega t)
for f2
-i \hbar a^2 e^{a^2x}
for f3
- \hbar ke^{-(\omega t+kx)}
the eigenvalues for f1 is -k^2
the eigenvalues for f2 is a^2
the eigenvalues for f3 is -ik
how do I find the correct eigenfunction?