Eigenvalues of operator in dirac not* (measurement outcomes)

12x4
Messages
28
Reaction score
0

Homework Statement


A measurement is described by the operator:

|0⟩⟨1| + |1⟩⟨0|

where, |0⟩ and |1⟩ represent orthonormal states.

What are the possible measurement outcomes?

Homework Equations


[/B]
Eigenvalue Equation: A|Ψ> = a|Ψ>

The Attempt at a Solution



Apologies for the basic question but just very unsure of myself when it comes to this stuff. I have had a go and come up with a solution but I'm not sure if its right so any help would be much appreciated.

We're told that:
A = |0⟩⟨1| + |1⟩⟨0|

Can I then assume something like: Ψ = α|1> + β|0>?

using this I've then solved the eigenvalue equation, AΨ=aΨ, and found:

α|0> + β|1> = aα|1> + aβ|0>

giving:

α=aβ & β = aα

thus,

β=a2β

a = (+-) 1

hence, my eigenvalues are -1 and 1.

and these are the possible outcomes?
 
Physics news on Phys.org
You don't assume that |\psi>=\alpha |1>+ \beta |2>, there is a reason for that. The completeness relation gives,

I=|1><1|+|2><2| [look up completeness relation if you don't know about it.]

which means, |\psi>=I|\psi>=|1><1|\psi>+|2><2|\psi>

or, |\psi>=\alpha |1>+ \beta |2>,

where \alpha=<1|\psi>

and \beta=<2|\psi> are c-number.

Except that there are no more problem with your work.
 
12x4 said:

Homework Statement


A measurement is described by the operator:

|0⟩⟨1| + |1⟩⟨0|

where, |0⟩ and |1⟩ represent orthonormal states.

What are the possible measurement outcomes?

Homework Equations


[/B]
Eigenvalue Equation: A|Ψ> = a|Ψ>

The Attempt at a Solution



Apologies for the basic question but just very unsure of myself when it comes to this stuff. I have had a go and come up with a solution but I'm not sure if its right so any help would be much appreciated.

We're told that:
A = |0⟩⟨1| + |1⟩⟨0|

Can I then assume something like: Ψ = α|1> + β|0>?

using this I've then solved the eigenvalue equation, AΨ=aΨ, and found:

α|0> + β|1> = aα|1> + aβ|0>

giving:

α=aβ & β = aα

thus,

β=a2β

a = (+-) 1

hence, my eigenvalues are -1 and 1.

and these are the possible outcomes?

Yes, that looks just fine to me. The possible measurements of an experiment are the eigenvalues of the operator.
 
Last edited:
thank you. will look up the completeness relation
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top