Do you know how to write a linear transformation as a matrix, in a given basis?
Apply the matrix to each basis vector in turn, writing the result as a linear combination of the basis vectors. The coefficients in that linear combination give a column of the matrix representation.
Here, the first transformation is projection of (x, y, z) onto the plane 2x+y= 0. In the xy-plane (since z doesn't change), that is a line with slope -2 and so a perpendicular has slope 1/2. The line through (1, 0), perpendicular to that line, is y= (1/2)x- 1/2. The line y= (1/2)x- 1/2 intersects y= -2x when -2x= (1/2)x- 1/2, (5/2)x= 1/2, x= 1/5, y= -2/5. That is, <1, 0, 0> is mapped to <1/5, -2/5, 0> which is parallel to <1, -2, 0>. The line through (0, 1), perpendicular to that line, is y= (1/2)x+ 1/2. The line y= (1/2)x+ 1/2 intersects y= -2x when -2x= (1/2)x+ 1/2, (5/2)x= -1/2, x= -1/5, y= 2/5. That is, <0, 1, 0> is mapped to <-1/5, 2/5, 0> which is parallel to <-1, 2, 0>. In the standard basis, this linear transformation is represented by the matrix
\begin{pmatrix}1 & -1 & 0 \\ -2 & 2 & 0 \\ 0 & 0 & 1\end{pmatrix}
and find the eigenvalues and eigenmatrices of that matrix. Of course, a projection is NOT "invertible", hence one row is multiple of another and it should be clear that one eigenvalue is 0.
More basically, you should be able to see that any vector perpendicular to the plane 2x+ y+ 0z= 0, that any multiple of <1, 1, 0> is mapped to the 0 vector so is an eigenvector with eigenvalue 0. And any vector already in that plane is mapped to itself so is an eigenvector with eigenvalue 1.
The second problem is very similar except that, as a reflection, any vector perpendicular to the plane is mapped to -1 times itself so is an eigenvector with eigenvalue -1 while any vector in the plane is mapped to the 0 vector.