Ivor Denham
- 2
- 0
Homework Statement
Assume a two level laser system with no degeneracy (g1 = g2 = 1).
If N_2 + N1 = \text{constant}[\tex], show that B12 = B21[\tex].<br /> <br /> <h2>Homework Equations</h2><br /> \frac{\partial N_1}{\partial t}=-B_{12}\rho(v_{21}N_1[\tex]&lt;br /&gt; \frac{\partial N_2}{\partial t}=-B_{21}\rho(v_{21}N_2[\tex]&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; &amp;lt;h2&amp;gt;The Attempt at a Solution&amp;lt;/h2&amp;gt; &amp;lt;br /&amp;gt; I think there might be something up with the signs in the relevant equation, a convention I am not observing.&amp;lt;br /&amp;gt; &amp;lt;br /&amp;gt; N_1+N_2=c[\tex]&amp;amp;lt;br /&amp;amp;gt; &amp;amp;lt;b&amp;amp;gt;\frac{\partial N_1}{\partial t}+\frac{\partial N_2}{\partial t}=\frac{\partial c}{\partial t}[\tex]&amp;amp;lt;/b&amp;amp;gt;&amp;amp;amp;lt;br /&amp;amp;amp;gt; &amp;amp;amp;lt;b&amp;amp;amp;gt;&amp;amp;amp;lt;b&amp;amp;amp;gt;&amp;amp;amp;lt;b&amp;amp;amp;gt;\frac{\partial N_1}{\partial t}+\frac{\partial N_2}{\partial t}=0[\tex]&amp;amp;amp;lt;/b&amp;amp;amp;gt;&amp;amp;amp;lt;/b&amp;amp;amp;gt;&amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;gt; &amp;amp;amp;amp;lt;b&amp;amp;amp;amp;gt;&amp;amp;amp;amp;lt;b&amp;amp;amp;amp;gt;&amp;amp;amp;amp;lt;b&amp;amp;amp;amp;gt;&amp;amp;amp;amp;lt;b&amp;amp;amp;amp;gt;&amp;amp;amp;amp;lt;b&amp;amp;amp;amp;gt;&amp;amp;amp;amp;lt;b&amp;amp;amp;amp;gt;-B_{12}\rho(v_{21}N_1+-B_{21}\rho(v_{21}N_2=0[\tex]&amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;gt;&amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;gt;&amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;gt;&amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;gt; &amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;gt;-B_{12}N_1+-B_{21}N_2=0[\tex]&amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;gt; &amp;amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;amp;lt;b&amp;amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;amp;lt;br /&amp;amp;amp;amp;amp;amp;gt; From here I am stuck, where have I gone wrong?&amp;amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;amp;gt;&amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;gt;&amp;amp;amp;amp;lt;/b&amp;amp;amp;amp;gt;&amp;amp;amp;lt;/b&amp;amp;amp;gt;[/B]