Einstein velocity addition solving for v

AI Thread Summary
The discussion focuses on solving the Einstein velocity addition formula, specifically finding v in terms of u and w. The formula presented is w = (u + v) / (1 + uv), leading to the rearrangement v = (w - u) / (1 - uw). Participants also inquire about the use of LaTeX outside of specialized forums, noting its importance in scientific writing. The conversation highlights the mathematical manipulations necessary to derive the desired variable. Overall, the thread emphasizes the relevance of LaTeX for clarity in scientific communication.
gtguhoij
Messages
33
Reaction score
2
Homework Statement
I am trying to solve for v in the equation below. I just want to confirm I got the correct answer. Can someone confirm? If my writing is to messy I will type it. Just let me know if you can read it?
Relevant Equations
## w = \frac {u+v} {uv+1}##
 
Last edited:
Physics news on Phys.org
If my writing is to messy
It is.
 
## w = \frac {u+v} {uv+1} = ##
## \frac {w} {u+v} = \frac {1} {uv+1} = ##
## \frac {w} {u} = \frac {1} {(uv+1) -v} = ##
## \frac {w} {u} = \frac {1} {(-uv^2-v)} =##
## \frac {w} {u} = \frac {1} {(-uv^2-v)} =##
## \frac {vw} {u} = \frac {v} {(-uv^2-v)} = ##
## \frac {vw} {u} = \frac {-v} {(-uv^2-v)} = ##
## \frac {vw} {u} = \frac {-v} {(-uv^2-v)} ##
## \frac {uvw} {u} = \frac {-vu} {(-uv^2-v)} ##
## \frac {uvw} {u} = \frac {-v} {(-v^2-v)} =##
## \frac {uvw} {u} = \frac {-v} {(-v^2-v)} =##
## \frac {u} {uvw}= \frac {(-v^2-v)} {-v} = ##
## \frac {u} {uvw-v}= {(-v^2-v)} =##
## \frac {-vu} {uvw}= \frac {-v} {(-v^2-v)} =##
## \frac {-u} {uw}= \frac {1} {(v+1)} =##
## \frac {-u} {uw-1}= \frac {1} {(v)} =##
## \frac {-u} {uw-1}= \frac {1} {(v)} =## ## \frac {uw+1} {u} = {(v)} ##

Is there any way to use latex outside the physics forum?
 
Are you trying to solve for ##v## in terms of ##u## and ##w##? Quicker is:
$$\frac{u + v}{1 + uv} = w \ \Rightarrow \ u + v = w + uvw \ \Rightarrow \ v(1 -uw) = w - u \ \Rightarrow \ v = \frac{w - u}{1 - uw}$$
 
gtguhoij said:
Is there any way to use latex outside the physics forum?
It's more or less the standard for scientific writing

##\ ##
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Back
Top