Einstein velocity addition solving for v

Click For Summary
The discussion focuses on solving the Einstein velocity addition formula, specifically finding v in terms of u and w. The formula presented is w = (u + v) / (1 + uv), leading to the rearrangement v = (w - u) / (1 - uw). Participants also inquire about the use of LaTeX outside of specialized forums, noting its importance in scientific writing. The conversation highlights the mathematical manipulations necessary to derive the desired variable. Overall, the thread emphasizes the relevance of LaTeX for clarity in scientific communication.
gtguhoij
Messages
33
Reaction score
2
Homework Statement
I am trying to solve for v in the equation below. I just want to confirm I got the correct answer. Can someone confirm? If my writing is to messy I will type it. Just let me know if you can read it?
Relevant Equations
## w = \frac {u+v} {uv+1}##
 
Last edited:
Physics news on Phys.org
If my writing is to messy
It is.
 
## w = \frac {u+v} {uv+1} = ##
## \frac {w} {u+v} = \frac {1} {uv+1} = ##
## \frac {w} {u} = \frac {1} {(uv+1) -v} = ##
## \frac {w} {u} = \frac {1} {(-uv^2-v)} =##
## \frac {w} {u} = \frac {1} {(-uv^2-v)} =##
## \frac {vw} {u} = \frac {v} {(-uv^2-v)} = ##
## \frac {vw} {u} = \frac {-v} {(-uv^2-v)} = ##
## \frac {vw} {u} = \frac {-v} {(-uv^2-v)} ##
## \frac {uvw} {u} = \frac {-vu} {(-uv^2-v)} ##
## \frac {uvw} {u} = \frac {-v} {(-v^2-v)} =##
## \frac {uvw} {u} = \frac {-v} {(-v^2-v)} =##
## \frac {u} {uvw}= \frac {(-v^2-v)} {-v} = ##
## \frac {u} {uvw-v}= {(-v^2-v)} =##
## \frac {-vu} {uvw}= \frac {-v} {(-v^2-v)} =##
## \frac {-u} {uw}= \frac {1} {(v+1)} =##
## \frac {-u} {uw-1}= \frac {1} {(v)} =##
## \frac {-u} {uw-1}= \frac {1} {(v)} =## ## \frac {uw+1} {u} = {(v)} ##

Is there any way to use latex outside the physics forum?
 
Are you trying to solve for ##v## in terms of ##u## and ##w##? Quicker is:
$$\frac{u + v}{1 + uv} = w \ \Rightarrow \ u + v = w + uvw \ \Rightarrow \ v(1 -uw) = w - u \ \Rightarrow \ v = \frac{w - u}{1 - uw}$$
 
gtguhoij said:
Is there any way to use latex outside the physics forum?
It's more or less the standard for scientific writing

##\ ##
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
Replies
17
Views
2K
  • · Replies 1 ·
Replies
1
Views
516
  • · Replies 9 ·
Replies
9
Views
2K
Replies
14
Views
580
  • · Replies 11 ·
Replies
11
Views
1K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
3
Views
1K