I tried this:
We can assume that F(x1,x2,x3) is a symetric ecuation; => F(x1,x2,x3) = F(xs(1),xs(2),xs(3)), where s is a permutation of the {1, 2, 3} set;
F(x1,x2,x3) = F(x2,x1,x3) => \frac{{x_2 }}{{x_1 }} + \frac{{x_3 }}{{x_2 }} + \frac{{x_1 }}{{x_3 }} = \frac{{x_3 }}{{x_1 }} + \frac{{x_1 }}{{x_2 }} + \frac{{x_2 }}{{x_3 }} \Rightarrow \frac{{x_2 }}{{x_1 }} + \frac{{x_3 }}{{x_2 }} + \frac{{x_1 }}{{x_3 }} - \frac{{x_3 }}{{x_1 }} - \frac{{x_1 }}{{x_2 }} - \frac{{x_2 }}{{x_3 }} = 0
\frac{{x_2 - x_3 }}{{x_1 }} + \frac{{x_3 - x_1 }}{{x_2 }} + \frac{{x_1 - x_2 }}{{x_3 }} = 0
\begin{array}{l}<br />
x_1 + x_2 + x_3 = 0 \Rightarrow - x_3 = x_1 + x_2 ; - x_2 = ... \\ <br />
\Rightarrow \frac{{x_2 - x_3 }}{{x_1 }} + \frac{{x_3 - x_1 }}{{x_2 }} + \frac{{x_1 - x_2 }}{{x_3 }} = \frac{{2x_2 + x_1 }}{{x_1 }} + \frac{{2x_3 + x_2 }}{{x_2 }} + \frac{{2x_1 + x_3 }}{{x_3 }} = 0 \\ <br />
\Rightarrow 2(\frac{{x_2 }}{{x_1 }} + \frac{{x_3 }}{{x_2 }} + \frac{{x_1 }}{{x_3 }}) + 3 = 0 \Rightarrow 2S + 3 = 0 \Rightarrow S = - \frac{3}{2} \\ <br />
\end{array}