Elastic Potential Energy - Positive or Negative?

AI Thread Summary
The discussion centers on understanding the calculation of elastic potential energy (PE) and the signs associated with force functions. The user integrates the force function but receives a negative value, leading to confusion about the positive change in potential energy. Clarification is provided that the force function used should represent the force exerted by the user stretching the spring, not the spring's restoring force. The analogy of lifting an object against gravity is used to illustrate how work can be negative while potential energy increases. The conversation emphasizes the importance of correctly identifying the forces involved in the calculations.
amandela
Messages
9
Reaction score
3
Homework Statement
Q: To stretch a certain nonlinear spring by an amount x requires a force F given by F = 40x - 6x2, where F is in newtons and x is in meters. What is the change in potential energy when the spring is stretched 2 meters from its equilibrium position?
Relevant Equations
F=-kd
INT [-F ]dx = ΔPE
So I understand that I have to integrate the negative of the force function to get the change in PE. I get -(20x^2 - 2x^3) and when I evaluate it from 0 to 2, I get -64N. But, of course, the change is positive. What am I missing?

Thank you.
 
Physics news on Phys.org
Make a sketch showing the sign of the directions.Then check your equations.
 
BvU said:
Make a sketch showing the sign of the directions.Then check your equations.
So the Fs is negative (b/c moving back to 0) and I take the negative integral of the negative function?
 
In the formula,
$$\Delta PE = -\int_{x_0}^x F_{\rm s}(x)\,dx,$$ the force ##F_{\rm s}## is the force exerted by the spring. If you reread the problem statement, the force function ##F(x)## is the force exerted by you (or whatever/whomever is doing the stretching) to stretch the spring.

It's like if you do 10 J of work to lift an object and increase its potential energy by the same amount, the work gravity does is negative because gravity pulls downward but the displacement of the object points upward.
 
amandela said:
I get -64N
N?

Btw, I'd prefer it said "relaxed" position, not equilibrium position. If there is a weight hanging from it they are different.
 
  • Like
Likes amandela and SammyS
vela said:
In the formula,
$$\Delta PE = -\int_{x_0}^x F_{\rm s}(x)\,dx,$$ the force ##F_{\rm s}## is the force exerted by the spring. If you reread the problem statement, the force function ##F(x)## is the force exerted by you (or whatever/whomever is doing the stretching) to stretch the spring.

It's like if you do 10 J of work to lift an object and increase its potential energy by the same amount, the work gravity does is negative because gravity pulls downward but the displacement of the object points upward.
OK. Thank you.
 
Thread 'Voltmeter readings for this circuit with switches'
TL;DR Summary: I would like to know the voltmeter readings on the two resistors separately in the picture in the following cases , When one of the keys is closed When both of them are opened (Knowing that the battery has negligible internal resistance) My thoughts for the first case , one of them must be 12 volt while the other is 0 The second case we'll I think both voltmeter readings should be 12 volt since they are both parallel to the battery and they involve the key within what the...
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Back
Top