Electric Field of Concentric Cylinders: r = 4.0 and 7.1 cm

AI Thread Summary
To find the electric field of two concentric cylinders with given radii and charge densities, apply Gauss's law. For r = 4.0 cm, only the inner cylinder's charge contributes since it is within the outer cylinder. For r = 7.1 cm, the electric field must account for both cylinders' charges as the Gaussian surface encloses them. The relevant equations involve linear charge density and the total charge within the Gaussian surface. Understanding the contribution of each cylinder is crucial for accurate calculations.
tbomber
Messages
13
Reaction score
0
Two long, charged, concentric cylinders have radii of 3.0 and 6.0 cm. The charge per unit length is 4.8 10- 6 C/m on the inner cylinder and -8.0 10-6 C/m on the outer cylinder. Find the electric field at

(a) r = 4.0 cm and

(b) r = 7.1 cm


I know how to find the electric field for each individual cylinder AT 3 and 6 cm... using this equation:

E (electric field) = Q (total charge) / (2*pi*radius*(Q/lambda)*epsilon0)

but i haven't a clue as to how to find the electric field when you include another charged surface using gauss's law...

any help would be much appreciated - as you can see I'm pretty lost.

some equations i know that may or may not help:

Lambda (sp?... linear charge density) = Q / L where Q is the total charge of the surface and L is the length of the gaussian surface

E*A = q/e0 where e0 = 8.85E-12 and q is the charge within the gaussian surface... and A is the surface area of the cylinder (not including the two circles on either end).

thanks
 
Physics news on Phys.org
If you know how to find the electric field for one cylinder you can find it for both. Just include the charge from both cylinders in your Q.
 
dicerandom said:
If you know how to find the electric field for one cylinder you can find it for both. Just include the charge from both cylinders in your Q.

And remember that the charge due to the outside cylinder does not factor into the r=4 cm calculation because you are "inside of the outside" cylinder.

-Dan
 
topsquark said:
And remember that the charge due to the outside cylinder does not factor into the r=4 cm calculation because you are "inside of the outside" cylinder.

-Dan
so does that mean for A and B I'm only finding the electric field for the inside and outside cylinders, respectively?
 
In part (b) your Gaussian surface encloses both the inner and outer cylinders, so you need to include the charge for both. The electric field you calculate will be the electric field due to both cylinders.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Back
Top