Electric field on a charge some height above the center of a disc

AI Thread Summary
The discussion focuses on calculating the electric field at a point above the center of a charged disc. The approach involves determining charge density from a ring and integrating over the radius of the disc. Key equations include the electric field formula and the integration of charge density, but the user encounters confusion regarding the presence of 'dr' in the denominator. Clarifications emphasize the need for proper handling of infinitesimal quantities and the definitions of charge and area. The conversation highlights the importance of careful mathematical treatment in physics problems.
PhizKid
Messages
477
Reaction score
2

Homework Statement


Given a disc of radius 'R' with a charge 'h' above the center of the disc, find the electric field on the charge.

Homework Equations


##E = \frac{kQ}{d^2}##

The Attempt at a Solution


I can find the charge density from a ring then integrate over R:

##\sigma = \frac{Q}{A}##

##Area_{ring} = 2\pi r*dr##

##Q = \sigma * 2\pi r*dr##

Since the horizontal components cancel out, I'll take the cosine angle:

##E_y = \frac{kQ}{(h^2 + r^2)} * \frac{h}{\sqrt{h^2 + r^2}}##

##E_y = \frac{kh2\pi \sigma dr}{(h^2 + r^2)^{\frac{3}{2}}}##

##E_y = kh\pi \sigma \int_{0}^{R} \frac{2r dr}{(h^2 + r^2)^{\frac{3}{2}}}##

##E_y = kh\pi \sigma [\frac{-2}{\sqrt{h^2 + r^2}}]##

Integrate from 0 to R:

##E_y = kh\pi \sigma [\frac{-2}{\sqrt{h^2 + R^2}} + \frac{2}{h}]##

Re-substitute ##\sigma = \frac{Q}{A}##:

##E_y = kh\pi \frac{Q}{A} [\frac{-2}{\sqrt{h^2 + R^2}} + \frac{2}{h}]##

##E_y = kh\pi * \frac{Q}{2\pi r*dr} * [\frac{-2}{\sqrt{h^2 + R^2}} + \frac{2}{h}]##

I'm now stuck with this 'dr' in the denominator. Not sure what to do from here
 
Physics news on Phys.org
Is the disc charged? Is the charge above the disc very small?
 
You need to clean up your math. Your carelessness is leading to dumb mistakes.

PhizKid said:

Homework Statement


Given a disc of radius 'R' with a charge 'h' above the center of the disc, find the electric field on the charge.


Homework Equations


##E = \frac{kQ}{d^2}##


The Attempt at a Solution


I can find the charge density from a ring then integrate over R:

##\sigma = \frac{Q}{A}##
Think about what Q and A represent here.

##Area_{ring} = 2\pi r*dr##

##Q = \sigma * 2\pi r*dr##

Since the horizontal components cancel out, I'll take the cosine angle:

##E_y = \frac{kQ}{(h^2 + r^2)} * \frac{h}{\sqrt{h^2 + r^2}}##
You can't have lone differentials sitting around. You should have written
\begin{align*}
dA &= 2\pi r\,dr \\
dQ &= \sigma\,dA = 2\pi \sigma r \, dr \\
dE_y &= \frac{k\,dQ}{h^2+r^2} \frac{h}{\sqrt{h^2+r^2}} = \frac{2\pi hk \sigma r \, dr}{(h^2+r^2)^{3/2}}
\end{align*} If you have an infinitesimal quantity on one side of the equation, you have to have one on the other side as well.

##E_y = \frac{kh2\pi \sigma dr}{(h^2 + r^2)^{\frac{3}{2}}}##

##E_y = kh\pi \sigma \int_{0}^{R} \frac{2r dr}{(h^2 + r^2)^{\frac{3}{2}}}##
Look at those two lines. According to what you wrote,
$$\frac{kh2\pi \sigma dr}{(h^2 + r^2)^{\frac{3}{2}}} = kh\pi \sigma \int_{0}^{R} \frac{2r dr}{(h^2 + r^2)^{\frac{3}{2}}}$$ because both sides of the equation equal ##E_y##. The integration apparently does absolutely nothing.

Re-substitute ##\sigma = \frac{Q}{A}##:

##E_y = kh\pi \frac{Q}{A} [\frac{-2}{\sqrt{h^2 + R^2}} + \frac{2}{h}]##

##E_y = kh\pi * \frac{Q}{2\pi r*dr} * [\frac{-2}{\sqrt{h^2 + R^2}} + \frac{2}{h}]##

I'm now stuck with this 'dr' in the denominator. Not sure what to do from here
You need to think about what Q and A represent. Q is the charge of what? A is the area of what?
 
  • Like
Likes 1 person
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top