Electrical Potential Energy problem

AI Thread Summary
A point charge Q of +4.60x10^(-9)C is fixed at the origin, while a second charge q of +1.20x10^(-9)C is placed 0.250m away on the x-axis. The discussion revolves around calculating the electrical potential energy U of these charges using the formula U = (1/(4πε₀))(q1q2/r). The confusion arose from the incorrect application of the potential energy change formula, leading to an extra negative sign in the calculations. Ultimately, the participant resolved the issue by recognizing a unit conversion error, mistaking micro for nano, which clarified the correct answer of 0.198J. Understanding the correct formula and unit conversions is crucial for solving electrical potential energy problems.
sirdeity
Messages
2
Reaction score
0
Hello. I'm just stuck on a problem. A point charge Q=+4.60x10^(-9)C is held fixed at the origin. A second point charge q=+1.20x10^(-9)C with mass of 2.80x10^(-4)kg is placed on the x-axis, 0.250m from the origin.

The problem asks, "What is the electrical potential energy U of the pair of charges?"

Okay, so I tried using the formulas:
-(Ub-Ua)=-deltaU and U=((1)/(4*pi*Eo))*((q1*qo)/(r))

Where I'm confused is that q1 and qo appear the same in both Ua and Ub, thus wouldn't Ub-Ua cancel and equal zero? Here's my obviously incorrect work:

-(((1)/(4*pi*Epsilono))*(((1.2x10^(-9))(4.6x10^(-9)))/(.25m)) = -1.98x10^(-7)

However, the correct answer according to the back of the book is "0.198J." Can anyone with patience please explain what I'm doing wrong? This material is new to me. I'm in a 5 week summer calculus 2 based engineering physics 2 course (PHY 122). We only just started talking about this material yesterday.
 
Physics news on Phys.org
You do not need the delta U equation. That formula applies when you change from one situation at one potential energy, to another situation with another potential energy.

Here you do not have a change in potential energy. The potential energy is staying the same, and they want you to find what it is. So, the only relationship you'll need is:

U = \frac{1}{4\pi\epsilon_o}\frac{q_1q_2}{r}

I am getting the same answer you are, but positive. Your extra negative sign comes in because you have a negative sign because that negative sign you have in the potential energy formula shouldn't be there. Unlike the gravitational potential energy expression, the electrical potential energy expression does not have that extra negative sign. Just make sure if the charges are negative, you use put their negative signs in the "U" formula!

Other than that, I think your work is correct. You are off by seven factors of ten. I think you may want to check to make sure that you are actually using the correct units, just in case you misread them. Also, if check your unit conversions if you did any. Then, if that isn't it, check the accuracy of the books answer with someone else like your professor.
 
Last edited:
Thank you very much for your help. I actually figured out the problem last night, after about 3 hours of trying various things. The thing that was messing me up was that I assumed micro was ^-9 when it is actually ^-6.

It was a silly mistake on my part. Thanks again.
 
sirdeity said:
Thank you very much for your help. I actually figured out the problem last night, after about 3 hours of trying various things. The thing that was messing me up was that I assumed micro was ^-9 when it is actually ^-6.

It was a silly mistake on my part. Thanks again.

No problem. I'm glad you figured it out!
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top