Electromagnetic fields of a rotating solid sphere: total charge inside

/flûks/
Messages
9
Reaction score
0

Homework Statement


A solid sphere of radius a rotates with angular velocity ω\hat{z} relative to an inertial frame K in which the sphere's center is at rest. In a frame K' located at the surface of the sphere, there is no electric field, and the magnetic field is a dipole field with M=M\hat{z} located at the center of the sphere.

First find the electric and magnetic fields as measured in the K frame and do not assume ωa<<c, then calculate the total charge inside the planet also in the K frame, this time assuming ωa<<c.

Homework Equations



(i) \textbf{B}=\frac{3 \hat{r} \left( \hat{r} \bullet \textbf{M} \right) - \textbf{M}} {a^{3}}

(ii) Q_{enc}=\frac{1}{4π}\int \textbf{E} \bullet \textbf{da}

Also the Lorentz transformation equations to go from E' to E and B' to B (don't want to type...):
http://en.wikipedia.org/wiki/Lorent...z_transformation_of_the_electromagnetic_field

The Attempt at a Solution



I got the transformed electric and magnetic fields, and I want to use (ii) to find the total charge using the electric field I get:

\textbf{E}=\frac{Mω} {ca^{2} \sqrt{1-\frac{ω^{2}a^{2}} {c^{2}}sin^{2} \left(θ \right)}} \left(sin^{2}θ \hat{r} - 2sinθcosθ \hat{θ} \right)

BUT I do not know what da would be in this case, since the sphere is rotating in the K frame. Conventionally da is just

r dr dθ \hat{r}

EDIT: but that surface element only accounts for part of the electric flux. I guess I'm just not sure. Any insights on this?
 
Physics news on Phys.org
hi /flûks/! :smile:
/flûks/ said:
BUT I do not know what da would be in this case, since the sphere is rotating in the K frame. Conventionally da is just

r dr dθ \hat{r}

it doesn't matter that the real sphere is rotating …

you're integrating over an imaginary sphere! :wink:
(since you have found E in the stationary frame, you integrate as usual)
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top