[Electromagnetism] Force on a moving charge expression

carlosbgois
Messages
66
Reaction score
0

Homework Statement


[/B]
The total force on a moving charge q with velocity v is given by \mathbf{F}=q(\mathbf{E}+\mathbf{v}\times\mathbf{B}) Using the scalar and vector potentials, show that \mathbf{F}=q[-\nabla\phi-\frac{d\mathbf{A}}{dt}+\nabla(\mathbf{A}\cdot\mathbf{v})]

Homework Equations


[/B]
(1) \mathbf{E}=-\frac{d\mathbf{A}}{dt}-\nabla\phi
(2) \mathbf{B}=\nabla\times\mathbf{A}
(3) \mathbf{v}\times(\nabla\times\mathbf{A})=\nabla(\mathbf{v}\cdot\mathbf{A})-\mathbf{A}(\mathbf{v}\cdot\nabla)

The Attempt at a Solution



\mathbf{F}=q(\mathbf{E}+\mathbf{v}\times\mathbf{B})=q[-\nabla\phi-\frac{d\mathbf{A}}{dt}+\mathbf{v}\times\mathbf{B}]

Now I need to show that

\mathbf{v}\times\mathbf{B}=\nabla(\mathbf{A}\cdot\mathbf{v})

I tried applying (3) but didn't know where to go from there.
 
Physics news on Phys.org
carlosbgois said:

Homework Equations


[/B]
(1) \mathbf{E}=-\frac{d\mathbf{A}}{dt}-\nabla\phi
Here, the time derivative should be a partial derivative ##\frac{\partial \mathbf{A}}{\partial t}## ; i.e., it denotes the rate of change of ##\mathbf{A}## at a fixed point of space. But in the final expression that you want to get to for the force, the derivative is the "convective" time derivative ##\frac{d\mathbf{A}}{dt}## ; i.e., it denotes the rate of change of ##\mathbf{A}## as you move along with the particle. You will need to relate the two types of derivatives. See http://www.continuummechanics.org/cm/materialderivative.html

(3) \mathbf{v}\times(\nabla\times\mathbf{A})=\nabla(\mathbf{v}\cdot\mathbf{A})-\mathbf{A}(\mathbf{v}\cdot\nabla)
The last term is not quite written correctly. In your way of writing it, the Del operator has nothing to act upon.
 
Last edited:
As TSny said \mathbf{E}=-\nabla \phi - \partial_t \mathbf{A} nowusing the triple product identity:
\mathbf{v}\times(\nabla \times \mathbf{A}) = \nabla(\mathbf{A} \cdot \mathbf{v}) - \mathbf{A}(\mathbf{v} \cdot \nabla)
Which in the Lorentz equation:
\mathbf{F} = q \left[-\nabla \phi - \partial_t \mathbf{A} + \nabla(\mathbf{A} \cdot \mathbf{v}) - \mathbf{A}(\mathbf{v} \cdot \nabla) \right]
or
\mathbf{F} = q \left[-\nabla \phi - [\partial_t + (\mathbf{v} \cdot \nabla) ] \mathbf{A} + \nabla(\mathbf{A} \cdot \mathbf{v})\right]
where the term in the square bracket acting on \mathbf{A} is called the convective derivative, viz. (\partial_t + (\mathbf{v} \cdot \nabla) ) \mathbf{A} = \frac{d \mathbf{A}}{dt} as required.
 
Got it! Thank you all.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top