carlosbgois
- 66
- 0
Homework Statement
[/B]
The total force on a moving charge q with velocity v is given by \mathbf{F}=q(\mathbf{E}+\mathbf{v}\times\mathbf{B}) Using the scalar and vector potentials, show that \mathbf{F}=q[-\nabla\phi-\frac{d\mathbf{A}}{dt}+\nabla(\mathbf{A}\cdot\mathbf{v})]
Homework Equations
[/B]
(1) \mathbf{E}=-\frac{d\mathbf{A}}{dt}-\nabla\phi
(2) \mathbf{B}=\nabla\times\mathbf{A}
(3) \mathbf{v}\times(\nabla\times\mathbf{A})=\nabla(\mathbf{v}\cdot\mathbf{A})-\mathbf{A}(\mathbf{v}\cdot\nabla)
The Attempt at a Solution
\mathbf{F}=q(\mathbf{E}+\mathbf{v}\times\mathbf{B})=q[-\nabla\phi-\frac{d\mathbf{A}}{dt}+\mathbf{v}\times\mathbf{B}]
Now I need to show that
\mathbf{v}\times\mathbf{B}=\nabla(\mathbf{A}\cdot\mathbf{v})
I tried applying (3) but didn't know where to go from there.