Electrostatic interaction energy example (jackson)

rafaelpol
Messages
16
Reaction score
0

Homework Statement



I am trying to follow a derivation in Jackson - Classical Electrodynamics

Homework Equations



In equation 1.58 (2nd/3rd edition) of Jackson - Classical Electrodynamics he says that by using the fact that \mathbf{\rho} \cdot (\mathbf{\rho} +\mathbf{n})/ | \mathbf{\rho +n|}^{3} = \nabla_{\rho}(1/|\mathbf{\rho}+\mathbf{n}|), the integral \int {\mathbf{\rho} \cdot (\mathbf{\rho} +\mathbf{n})/ \rho^3 | \mathbf{\rho +n|}^{3}} can be easily shown to be equal to to 4\pi [\itex]. <br /> <br /> <h2>The Attempt at a Solution</h2><br /> <br /> I can&#039;t really follow on how to solve this integral once the fact mentioned above is known. I know how to solve the integral using spherical coordinates, but from what I have seen that does not follow from what Jackson said at all. I am just curious if there is an easier to evaluate the integral using the gradient identity.
 
Physics news on Phys.org
You have a typo, but that's probably not the problem. We actually have to use the identity

\frac{\vec{\rho}+\hat{n}}{ | \vec{\rho}+\hat{n}|^3 } = - \nabla_\rho \left( \frac{1}{ | \vec{\rho}+\hat{n}|} \right)

twice to rewrite

\int d^3\rho \frac{ \vec{\rho}\cdot ( \vec{\rho}+\hat{n}) }{ \rho^3 | \vec{\rho}+\hat{n}|^3} = \int d^3\rho \left[ \nabla_\rho \left( \frac{1}{ \rho} \right) \right] \cdot \left[ \nabla_\rho \left( \frac{1}{ | \vec{\rho}+\hat{n}|} \right) \right].

If we integrate by parts we find

\int d^3\rho \nabla_\rho\cdot \left[ \frac{1}{ | \vec{\rho}+\hat{n}|} \nabla_\rho \left( \frac{1}{ \rho} \right) \right] <br /> -\int d^3\rho \frac{1}{ | \vec{\rho}+\hat{n}|} \nabla_\rho^2 \left( \frac{1}{ \rho} \right) .

We can use the divergence theorem to show that the first, total derivative, term vanishes, while for the 2nd term, we use the fact that 1/\rho is the Green function for the 3d Laplace equation.
 
  • Like
Likes solidsnake1990
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top