Elegant Solution for the Snooker ball Problem

  • Thread starter Thread starter gautam89
  • Start date Start date
  • Tags Tags
    Ball
gautam89
Snooker balls Problems – An Approach to Elegant Solutions:

Problem Definition: In a set S of snooker balls, all of the same standard weight, there is one ball of non-standard weight.

Using a Scale Balance, find the non-standard ball with minimum number of trials- Provide a formula and a proof.
---------------------------------------------------
Proposition 1. Set S contains One non-standard ball of known relative weight -Identify non-standard :
Solution: For Quantity = 3 (to power n), or less;
Min weighing required = n.
Proposition 2: Set S contains One non-standard ball- of unknown relative weight; find the ball and identify its relative (heavier or lighter) weight ?:
Solution: For Qty = ( 3(power n) + 3(n-1) + 3 (n-2) … 3(2) + 3(1) ) or less;
Min weighing required = n +1.
---------------------------------------------------------
An approach to proofs of solutions:

Definition 1: (Ternary partition)
Divide the set S into three subsets A, B, and C, where
1. Qty(S) = Qt(A)+Qty(B) +Qty(C), and
2. Qty(A) = Qty(B) >= 1/3 x Qty(S), and
3. Qty(C) = Qty(A) - i; where i = 0,1 or 2.

Proof For Proposition 1: Weigh A with B. This will identify which of the subsets A, B, or C has the non-standard (with known relative weight) ball. – Recursively use n-1 weighings to find the non-standard ball (of known relative weight).

Definition 2 : (“Weight type”)
1. A ball is of “ heavier weight type” when it can NOT be lighter ball.
2. A ball is of “ lighter weight type” when it can NOT be heavier ball.
3. A subset of balls is called of a specific “weight type” if all the balls in that subset is of that “weight type”

Proof For proposition 2:
1. Divide the set S into its Ternary subsets A, B, C (Definition 1), and weigh set A & B.
2. If A and B are Not equal, then using the “weight type” concept and Proposition 1, one can “cross-weigh” subsets of A, B and C n times, to find the non-standard ball from A or B, and identify if it is heavier or lighter ball
3. If subsets A and B are equal then the non-standard ball is in C, and again one can use “cross weighings” and Proposition 1, n times to find and identify the relative weight of the non-standard ball in subset C.

What about problem when there are TWO non-standard balls (of equal weights)...

Gautam Pandya
---------------------
 
Physics news on Phys.org
gautam89 said:
Snooker balls Problems – An Approach to Elegant Solutions:

Problem Definition: In a set S of snooker balls, all of the same standard weight, there is one ball of non-standard weight.

Using a Scale Balance, find the non-standard ball with minimum number of trials- Provide a formula and a proof.
---------------------------------------------------
Proposition 1. Set S contains One non-standard ball of known relative weight -Identify non-standard :
Solution: For Quantity = 3 (to power n), or less;
Min weighing required = n.
Proposition 2: Set S contains One non-standard ball- of unknown relative weight; find the ball and identify its relative (heavier or lighter) weight ?:
Solution: For Qty = ( 3(power n) + 3(n-1) + 3 (n-2) … 3(2) + 3(1) ) or less;
Min weighing required = n +1.
---------------------------------------------------------
An approach to proofs of solutions:

Definition 1: (Ternary partition)
Divide the set S into three subsets A, B, and C, where
1. Qty(S) = Qt(A)+Qty(B) +Qty(C), and
2. Qty(A) = Qty(B) >= 1/3 x Qty(S), and
3. Qty(C) = Qty(A) - i; where i = 0,1 or 2.

Proof For Proposition 1: Weigh A with B. This will identify which of the subsets A, B, or C has the non-standard (with known relative weight) ball. – Recursively use n-1 weighings to find the non-standard ball (of known relative weight).

Definition 2 : (“Weight type”)
1. A ball is of “ heavier weight type” when it can NOT be lighter ball.
2. A ball is of “ lighter weight type” when it can NOT be heavier ball.
3. A subset of balls is called of a specific “weight type” if all the balls in that subset is of that “weight type”

Proof For proposition 2:
1. Divide the set S into its Ternary subsets A, B, C (Definition 1), and weigh set A & B.
2. If A and B are Not equal, then using the “weight type” concept and Proposition 1, one can “cross-weigh” subsets of A, B and C n times, to find the non-standard ball from A or B, and identify if it is heavier or lighter ball
3. If subsets A and B are equal then the non-standard ball is in C, and again one can use “cross weighings” and Proposition 1, n times to find and identify the relative weight of the non-standard ball in subset C.

What about problem when there are TWO non-standard balls (of equal weights)...

Gautam Pandya
---------------------
Notes on Elegant Proof of Snooker Ball problem
Note 1: Exceptions to the Ternary partitions:
For Qty(S) = 7, Ternary partition is 7 = 2 + 2 + 3
For Qty(S) = 10. Ternary partistion is 10 = 3 + 3 + 4

Note 2: let p = MIN ((3(power n-1), Qty(C)). Cross weighing p balls from sets A, B and C, and using Proposition 1, One can easily prove proposition 2.
Gautam Pandya
 
Last edited by a moderator:
gautam89 said:
Notes on Elegant Proof of Snooker Ball problem
Note 1: Exceptions to the Ternary partitions:
For Qty(S) = 7, Ternary partition is 7 = 2 + 2 + 3
For Qty(S) = 10. Ternary partistion is 10 = 3 + 3 + 4

Note 2: let p = MIN ((3(power n-1), Qty(C)).

Note 3: If A and B are of different weights, put aside p number of balls from the higher weight set, transfer p number of balls from lower weight to higher weight set, and transfer p balls from the set C (of standard weights) to the lower weight set.

Gautam Pandya

Note 4: Weigh the modified sets A and B. If they weigh opposite to their earlier weight types then the non-standard ball must be one of the p balls transferred from the lower weight type. If modified sets are equal then the non-standard ball is one of the p balls put aside from the higher weight type. In these two cases, Recurssively one can find the non-standard ball and identify its weight type.

Note 5: If modified sets weigh the same way as the original sets A and B, then non-standard ball is amongs the "remaining" balls in A and B. In this case, take
p = 3(power n-2), and repeat steps in Notes 3 and 4 above, and recurssively prove the proposition 2.
Note 6: If A = B the repeat steps then A and B has all standard balls and repeat steps in Note 3 and 4 above for Set C.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top