Starwatcher16
- 53
- 0
Lets say I have a bar of uniform material where one end has a diameter given by R_1 and another end given by R_2. R_2 > R_1, R(x) is linear.
So I know now three equations:
A)s=\frac{E \Delta L}{L}
B)R_x=R_1+\frac{x}{L}*(R_2-R_1)
C)A_x=\pi*R_x^2
Therefore, I know:
\Delta L=\frac{P}{E}\int \frac{dx}{\pi*A_x^2}=\frac{P}{E} \int \frac{dx}{\pi*[R_1+\frac{X}{L}(R_2-R_1)]^2},
let u=R_1+\frac{x}{L}*(R_2-R_1),\frac{du}{dx}=\frac{R_2-R_1}{L}, so:
Delta L=\frac{P}{E}*\frac{L}{R_2-R_1} \int \frac{dx}{\pi*[R_1+\frac{X}{L}(R_2-R_1)]^2}=\frac{P}{E\pi}*\frac{L}{R_2-R_1}*[\frac{1}{R_1}-\frac{1}{R_2}]
=\frac{P*L}{\pi*E*R_1*R_2}
Is that right?
So I know now three equations:
A)s=\frac{E \Delta L}{L}
B)R_x=R_1+\frac{x}{L}*(R_2-R_1)
C)A_x=\pi*R_x^2
Therefore, I know:
\Delta L=\frac{P}{E}\int \frac{dx}{\pi*A_x^2}=\frac{P}{E} \int \frac{dx}{\pi*[R_1+\frac{X}{L}(R_2-R_1)]^2},
let u=R_1+\frac{x}{L}*(R_2-R_1),\frac{du}{dx}=\frac{R_2-R_1}{L}, so:
Delta L=\frac{P}{E}*\frac{L}{R_2-R_1} \int \frac{dx}{\pi*[R_1+\frac{X}{L}(R_2-R_1)]^2}=\frac{P}{E\pi}*\frac{L}{R_2-R_1}*[\frac{1}{R_1}-\frac{1}{R_2}]
=\frac{P*L}{\pi*E*R_1*R_2}
Is that right?
Last edited: