EM wave/radiation from which equations?

  • Context: Graduate 
  • Thread starter Thread starter xxxyyy
  • Start date Start date
  • Tags Tags
    Em
Click For Summary
SUMMARY

The discussion centers on the relationship between the Heaviside-Feynman formula and the Jefimenko equations in the context of electromagnetic (EM) radiation. It is established that radiation arises from the acceleration term in Feynman's equation (21.1) and that wave solutions for the scalar potential (V) and vector potential (A) indeed translate into wave solutions for the electric field (E) and magnetic field (B). The proof involves applying Maxwell's equations and vector calculus identities, confirming that both fields satisfy the wave equation. The conversation also questions the completeness of Feynman's treatment of wave phenomena in classical electromagnetism.

PREREQUISITES
  • Understanding of Heaviside-Feynman formula (Feynman's Lectures, Vol 2, eq (21.1))
  • Familiarity with Jefimenko equations and Lienard-Wiechert potentials
  • Knowledge of Maxwell's equations in differential form
  • Proficiency in vector calculus and wave equations
NEXT STEPS
  • Study the derivation and implications of the Jefimenko equations in classical electromagnetism.
  • Explore the application of Lienard-Wiechert potentials in various charge distributions.
  • Learn about the Lorenz gauge condition and its role in electromagnetic theory.
  • Investigate the relationship between homogeneous and inhomogeneous wave equations in the context of EM fields.
USEFUL FOR

Physicists, electrical engineers, and students of electromagnetism seeking a deeper understanding of the relationship between potentials and fields in classical electromagnetic theory.

xxxyyy
Messages
14
Reaction score
2
Hi there,
in Feynmann's lectures, (Vol 2 eq (21.1) Heaviside-Feynman formula)
https://www.feynmanlectures.caltech.edu/II_21.html

it is said that radiation comes from the last term, the one with acceleration in it. This formula is a particular case of the Jefimenko equations, the ones derived from Lienard-Wiechert potentials.
These potentials are particular solutions of the inhomogeneus wave equations for the potentials (in Lorenz gauge). I should add the general solution of the homogeneus equestions, i.e. wave solutions, to get the true general solution.

Does wave solutions for the potentials translate into wave solutions for the fields?

And where does exactly the wave phenomenon come from? from the homogeneus solution or from the second time derivative Feynman was talking about in his (21.1) formula?
Thank you!
 
Last edited by a moderator:
Physics news on Phys.org
xxxyyy said:
Does wave solutions for the potentials translate into wave solutions for the fields?
Absolutely yes. If you have solutions ##V,\vec{A}## for the scalar potential and vector potential that satisfies the homogeneous or inhomogeneous wave equation, then the fields defined by $$\vec{E}=-\nabla V-\frac{\partial \vec{A}}{\partial t}$$ and $$\vec{B}=\nabla\times\vec{A}$$ satisfy the wave equation as well. To prove it is a not so hard vector calculus exercise, you will utilize Maxwell's equation (in differential form) and some vector calculus identities and the Lorentz gauge condition.
 
Last edited:
Set ##\phi = 0## such that ##\mathbf{E} = - \dfrac{\partial \mathbf{A}}{\partial t}## and ##\mathbf{B} = \nabla \times \mathbf{A}##. Set also ##\nabla \cdot \mathbf{A} = 0## then from Maxwell\begin{align*}
\Delta \mathbf{A} - \frac{\partial^2 \mathbf{A}}{\partial t^2} &= 0 \ \ \ (1) \\
\end{align*}Take the curl of ##(1)##,\begin{align*}
\Delta ( \nabla \times \mathbf{A} )- \frac{\partial^2}{\partial t^2}\left( \nabla \times \mathbf{A} \right) &= 0 \\

\Delta \mathbf{B} - \frac{\partial^2 \mathbf{B}}{\partial t^2} &= 0

\end{align*}Instead take the time derivative of ##(1)##,\begin{align*}
\Delta \left( \frac{\partial \mathbf{A}}{\partial t}\right) - \frac{\partial^2}{\partial t^2} \left( \frac{\partial \mathbf{A}}{\partial t} \right) &= 0\\

\Delta \mathbf{E} - \frac{\partial^2 \mathbf{E}}{\partial t^2} &= 0

\end{align*}The wave equations holds on ##\mathbf{E}## and ##\mathbf{B}##. Let ##\xi## be any component of either of these vectors, i.e. ##\Delta \xi - \dfrac{\partial^2 \xi}{\partial t^2} = 0## and let ##\xi(\boldsymbol{x},t) = f(p)## where ##p = k_1 x + k_2 y + k_3 z + k_4 t##. Then ##\dfrac{\partial^2 \xi}{\partial x_i^2} = k_i^2 \dfrac{d^2 f}{dp^2}## hence ##k_1^2 + k_2^2 + k_3^2 - k_4^2 = 0##. You may simply let ##k_4 = \pm 1## so that ##\hat{\mathbf{k}} = (k_1, k_2, k_3)## form the components of a unit vector. Then ##p_{\pm} = \hat{\mathbf{k}} \cdot \boldsymbol{x} \pm t## and for each component the general solution is ##\xi(\boldsymbol{x}, t) = f(p_+) + g(p_{-})##
 
Last edited by a moderator:
  • Like
Likes   Reactions: Delta2
Does wave phenomena arise from the third term in Feynman equation (21.1)?
At the end of 21-3 paragraph, Feyman boldy says that the complete theory of (classical) EM is in that box... but why doesn't he include the solutions of the homogeneous equations (the wave solutions)? Is really everything, that's a wave, in that third term of (21.1)?
I have here a (very respectable) book that includes them and it even says that, for bounded charge distributions, the Lienard-Wiechert potential are negligible far away from the sources, because they fall of faster then 1/r.
I'm confused.
 

Similar threads

  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 9 ·
Replies
9
Views
9K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
604
Replies
2
Views
1K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 26 ·
Replies
26
Views
4K