Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Energy band in K space VS real space

  1. Aug 30, 2011 #1
    Hi All,

    There is a simple question in my mind.
    A band with energy Ek has dispersion in k space. Then what it looks like in the real space?
  2. jcsd
  3. Aug 31, 2011 #2


    User Avatar
    Science Advisor

    The bands only exist in k-space, since the effective mean field one-particle Hamiltonian (Fock operator/Kohn-Sham operator), of which the e(k) are the eigenvalues, is diagonal in k-space, but not in real space.

    If you transform the eigenstates of this operator (the crystal orbitals) into real space, you get the Wannier orbitals, which look closely like normal atomic orbitals (in particular, they are identical in each unit cell). But these Wannier orbitals do not diagonalize the effective one-particle Hamiltonian anymore, so there is no e(r) relation in this sense.
  4. Aug 31, 2011 #3
    Let´s assume a perfect crystal and no scattering processes. Consider an electron and constant external electric field. If the electron were free, it would accelerate at uniform rate. However, the electron moves in a periodic structure. The E vs k relationship gives us an important information: at a given value of k, the slope of the curve is proportional to the electron's speed. Thus, although the external field is constant the electron moves in a complex way given by the E-k curve.
  5. Sep 19, 2011 #4
    Hi cgk,

    Do you mean integrate in the whole Brillioun Zone to get Wannier orbitals? In that case, one wave function psi(k) is just part of orbitals.

Share this great discussion with others via Reddit, Google+, Twitter, or Facebook