Energy fluctuations of canonical system

cdot
Messages
44
Reaction score
0

Homework Statement


Consider a system of fixed volume in thermal contact with a reservoir. Show that the mean square fluctuation in the energy is

< e-U >^2= t^2*(∂U/∂t) where U=<e>

Hint: use the partition function to relate (∂U/∂t) to the mean square flucuation. Also, mulitply out the (...)^2 term. Note: the temperature t of a system is a quantity that by definition does not flucuate in value when the system is in thermal contact with a reservoir.

Homework Equations


[/B]
U=Σε*exp(-ε/t)/Z=t^2*(∂logZ/∂t)
Where the summation is over all states

Z=Σexp(-ε/t)
Where the summation is over all states

The Attempt at a Solution


1. Replace U in the mean square energy flucation term with the definition
<ε-t^2*(∂logZ/∂t)>^2=t^2*(∂U/∂t)

2. (∂logZ/∂t)=(1/z)*(∂Z/∂t)
<ε-t^2*(1/z)*(∂Z/∂t)>^2=t^2*(∂U/∂t)

3. (∂Z/∂t)=∑ε*t^-2*exp(-ε/t)
<ε-t^2*(1/z)*∑ε*t^-2*exp(-ε/t)>^2=t^2*(∂U/∂t)

Not sure where to go from here. My intution says to take the deriviative of U and substitue on the right hand side. But taking the deriviaitve of U (as its defined above) with respect to t introduces a second derivative of logZ and makes the problem a lot more difficult. I feel like there is an easier way?
 
Physics news on Phys.org
Hi. You already know that <ε> =(1/Z) Σε*exp(-ε/t)
Now you need to find out an expression for <ε2>–<ε>2, so:
How would you express <ε2> using the partition function?
What function of the Z and derivatives of Z (with respect to time) would that correspond to?
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top