coquelicot
- 295
- 67
There were several notions I didn't master or even know. Thanks to the article of Domenicali posted by Fluidistic, I think I have finally understood the main point. And that's rather simple actually, once you know the definition of the electrochemical potential ##\mu## (I thought it was something else).
I allow myself to explain in simple words what I understood, in order for other persons not to be mystified by the formulae.
So, the electrochemical potential is the potential energy (density) of a kind of particles, which includes both the chemical potential energy and the usual electrical potential of the particle. The chemical potential energy of the particle stem from its natural tendency to move toward (or from) some another chemical compound. Now, we can neglect the potential chemical energy of the electrons in the wire, at least here for the sake of simplicity.
So, ##\mu ## is the electrical potential of the electrons with respect to the electrodes. I mean, if ##\varphi## is the electrical potential (which decrease linearly in the wire from the + electrode to the - electrode), an electron at position ##z## in the wire as a potential ##e\phi(z)##.
Now, the thermodynamic energy is equal to HEAT + ELECTRICAL POTENTIAL ENERGY (EPE) of the electrons (if we assume only electrons are relevant here).
Fluidistic has in fact just written that the heat flux, + the flux of the EPE is equal to the flux of the thermodynamic energy, which stem directly from this truth. The heat flux can be shown to be radial and the flux of the EPE axial. There is nothing new regarding the heat flux, so let me focus on the flux of the EPE; that's after all very natural: all what is said here is that the electrons are moving from the + electrode to the - one because they want to reduce their potential electrical energy, and thermodynamists delight at defining fluxes, so they define a flux of electrical potential energy (more generally a flux of electrochemical energy) just to say that such or such kind of particles are moving in order to decrease their potential energy, which is transformed into heat by some process as they move. That's just that! Of course, the flux follows the direction of the movement of the electrons etc.
Now the interesting point: this idea is very natural after all, even without involving thermodynamics. Why should we say that the electrons move in the wire because of the EM flux materialized by the Poynting vector, and not just because of the decreasing electrical potential from the + to the -. There is no problem after all to define a EPE energy flux, just as thermodynamists do. But then, how to conciliate the EM flux with this flux?
That's annoying and I have no real answer, but perhaps an analogy: Assume we have a vertical pipe. At the top of the pipe, some apparatus is continuously relaxing dust at a fix rate. Due to the gravity and the friction with air, the dust falls inside the pipe at constant speed. At the bottom of the pipe, the apparatus pumps the dust that has gathered here to the top of the pipe, generating a constant current of dust inside the pipe.
Notice that during its falling, the dust reduces its potential energy of gravity which is converted into heat by friction with air, and evacuated radially from the pipe.
Now, my question is: what has actually created the current of dust inside the pipe? is it the apparatus that is pumping the dust?, or is it the potential energy of gravity of the dust?
I allow myself to explain in simple words what I understood, in order for other persons not to be mystified by the formulae.
So, the electrochemical potential is the potential energy (density) of a kind of particles, which includes both the chemical potential energy and the usual electrical potential of the particle. The chemical potential energy of the particle stem from its natural tendency to move toward (or from) some another chemical compound. Now, we can neglect the potential chemical energy of the electrons in the wire, at least here for the sake of simplicity.
So, ##\mu ## is the electrical potential of the electrons with respect to the electrodes. I mean, if ##\varphi## is the electrical potential (which decrease linearly in the wire from the + electrode to the - electrode), an electron at position ##z## in the wire as a potential ##e\phi(z)##.
Now, the thermodynamic energy is equal to HEAT + ELECTRICAL POTENTIAL ENERGY (EPE) of the electrons (if we assume only electrons are relevant here).
Fluidistic has in fact just written that the heat flux, + the flux of the EPE is equal to the flux of the thermodynamic energy, which stem directly from this truth. The heat flux can be shown to be radial and the flux of the EPE axial. There is nothing new regarding the heat flux, so let me focus on the flux of the EPE; that's after all very natural: all what is said here is that the electrons are moving from the + electrode to the - one because they want to reduce their potential electrical energy, and thermodynamists delight at defining fluxes, so they define a flux of electrical potential energy (more generally a flux of electrochemical energy) just to say that such or such kind of particles are moving in order to decrease their potential energy, which is transformed into heat by some process as they move. That's just that! Of course, the flux follows the direction of the movement of the electrons etc.
Now the interesting point: this idea is very natural after all, even without involving thermodynamics. Why should we say that the electrons move in the wire because of the EM flux materialized by the Poynting vector, and not just because of the decreasing electrical potential from the + to the -. There is no problem after all to define a EPE energy flux, just as thermodynamists do. But then, how to conciliate the EM flux with this flux?
That's annoying and I have no real answer, but perhaps an analogy: Assume we have a vertical pipe. At the top of the pipe, some apparatus is continuously relaxing dust at a fix rate. Due to the gravity and the friction with air, the dust falls inside the pipe at constant speed. At the bottom of the pipe, the apparatus pumps the dust that has gathered here to the top of the pipe, generating a constant current of dust inside the pipe.
Notice that during its falling, the dust reduces its potential energy of gravity which is converted into heat by friction with air, and evacuated radially from the pipe.
Now, my question is: what has actually created the current of dust inside the pipe? is it the apparatus that is pumping the dust?, or is it the potential energy of gravity of the dust?