p75213
- 93
- 0
Given that:
E = hν where
E = energy of a photon
h = Planck's constant = 6.626 x 10-34 J·s
ν = frequency
Why is it that the energy (electromagnetic waves) in AC electrical circuits does not include frequency as part of the formula? eg.
\begin{array}{l}<br /> P = \frac{1}{2}{V_m}{I_m}\varphi \to \omega = \int_0^t {P\,dt} \\ <br /> {\rm{Where: }} \\ <br /> {\rm{P = average power, }} \\ <br /> {V_m} = {\rm{voltage magnitude, }} \\ <br /> {I_m}{\rm{ = current magnitude, }} \\ <br /> \omega = {\rm{energy, }} \\ <br /> \varphi {\rm{ = power factor(}}\cos ({\theta _v} - {\theta _i})) \\ <br /> \end{array}
The same thing applies to the formula for the energy contained in an inductor:
\begin{array}{l}<br /> \omega = \frac{1}{2}L{i^2} \\ <br /> {\rm{Where:}} \\ <br /> L{\rm{ = inductance}} \\ <br /> i{\rm{ = current}} \\ <br /> \end{array}
E = hν where
E = energy of a photon
h = Planck's constant = 6.626 x 10-34 J·s
ν = frequency
Why is it that the energy (electromagnetic waves) in AC electrical circuits does not include frequency as part of the formula? eg.
\begin{array}{l}<br /> P = \frac{1}{2}{V_m}{I_m}\varphi \to \omega = \int_0^t {P\,dt} \\ <br /> {\rm{Where: }} \\ <br /> {\rm{P = average power, }} \\ <br /> {V_m} = {\rm{voltage magnitude, }} \\ <br /> {I_m}{\rm{ = current magnitude, }} \\ <br /> \omega = {\rm{energy, }} \\ <br /> \varphi {\rm{ = power factor(}}\cos ({\theta _v} - {\theta _i})) \\ <br /> \end{array}
The same thing applies to the formula for the energy contained in an inductor:
\begin{array}{l}<br /> \omega = \frac{1}{2}L{i^2} \\ <br /> {\rm{Where:}} \\ <br /> L{\rm{ = inductance}} \\ <br /> i{\rm{ = current}} \\ <br /> \end{array}